Variables para la fase diagnóstica de un software piloto de planeación estratégica

Autores/as

  • Vladimir Sánchez-Riaño Universidad Jorge Tadeo Lozano
  • Liliana C. Suarez Baez Universidad Jorge Tadeo Lozano
  • Olmer Garcia-Bedoya Universidad Jorge Tadeo Lozano
  • Jairo R. Sojo-Gomez Universidad Jorge Tadeo Lozano

DOI:

https://doi.org/10.37467/revvisual.v9.3748

Palabras clave:

Planeación estratégica, Inteligencia Artificial, Software, Redes Sociales, Aprendizaje Automático, Publicidad

Resumen

El presente artículo es resultado del Proyecto Modelo semiótico de planeación estratégica, financiado por la Universidad Jorge Tadeo Lozano. En él, se busca establecer variables para la fase diagnóstica de un Software piloto de apoyo a la planeación estratégica publicitaria. El punto de partida fue el análisis del trabajo con casos de los premios Effie College Colombia 2018 y 2019, en los que el grupo investigador obtuvo dos premios oro. A partir de ello, se establecen los criterios para el perfilamiento de la situación del cliente (anunciante) y del contexto de marca desde cuatro categorías: mercados, comunicación, personas y tendencias.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ambika, P. (2020). “Machine learning and deep learning algorithms on the Industrial Internet of Things (IIoT)”. Advances in computers, 117(1), 321-338. https://doi.org/10.1016/bs.adcom.2019.10.007 DOI: https://doi.org/10.1016/bs.adcom.2019.10.007

Castells, M. (1997). La era de la información. Volumen 1: La sociedad red. Alianza editorial.

Conway, F., & Siegelman, J. (2006). Dark hero of the information age: In search of Norbert Wiener, the father of cybernetics. Basic Books.

Deepa, N., Pham, Q. V., Nguyen, D. C., Bhattacharya, S., Prabadevi, B., Gadekallu, T. R., ... & Pathirana, P. N. (2022). A survey on blockchain for big data: approaches, opportunities, and future directions. Future Generation Computer Systems. 131, 209-226. https://doi.org/10.1016/j.future.2022.01.017 DOI: https://doi.org/10.1016/j.future.2022.01.017

Elbagir, S., & Yang, J. (2020). Sentiment analysis on Twitter with Python’s natural language toolkit and VADER sentiment analyzer. En Iong Ao et al. (Eds.) IAENG Transactions on Engineering Sciences: Special Issue for the International Association of Engineers Conferences 2019 (pp. 63-80). https://doi.org/10.1142/9789811215094_0005 DOI: https://doi.org/10.1142/9789811215094_0005

Fainmesser, I. P., Olié Lauga, D., & Ofek, E. (2021). Ratings, reviews, and the marketing of new products. Management Science, 67(11), 7023-7045. https://doi.org/10.1287/mnsc.2020.3848 DOI: https://doi.org/10.1287/mnsc.2020.3848

Felt, M. (2016). Social media and the social sciences: How researchers employ Big Data analytics. Big Data & Society, 3(1), 1-15. https://doi.org/10.1177/2053951716645828 DOI: https://doi.org/10.1177/2053951716645828

García, A. (2012). Inteligencia Artificial. Fundamentos, práctica y aplicaciones. Rc Libros.

García O., Granados O., & Romero F. (2018). Social Media Competitive Intelligence: Measurement and Visualization from a Higher Education Organization. En Florez H., Diaz C., & Chavarriaga J. (Eds). Applied Informatics. ICAI 2018. Communications in Computer and Information Science, 942. https://doi.org/10.1007/978-3-030-01535-0_3 DOI: https://doi.org/10.1007/978-3-030-01535-0_3

Granados O, Garcia-Bedoya, O., & Romero F. (2022). Banks n Twitter: From Single Message To Visual Analytics Strategies, Journal of Engineering Science and Technology, 17(1), 138-155. http://hdl.handle.net/20.500.12495/6792

Hughes, J. D., Russcher, M. J., Langevin, C. D., Morway, E. D., & McDonald, R. R. (2022). The MODFLOW Application Programming Interface for simulation control and software interoperability. Environmental Modelling & Software, 148, 105257. https://doi.org/10.1016/j.envsoft.2021.105257 DOI: https://doi.org/10.1016/j.envsoft.2021.105257

Hutter, F., Kotthoff, L., & Vanschoren, J. (2019). Automated machine learning: methods, systems, challenges. Springer Nature. http://library.oapen.org/handle/20.500.12657/23012 DOI: https://doi.org/10.1007/978-3-030-05318-5

Jagodič, G., & Šinkovec, M. (2021). Involvement of Artificial Intelligence in Modern Society. International Journal of Management, Knowledge and Learning, 10, 267-273. DOI: https://doi.org/10.53615/2232-5697.10.267-273

Kotabe, M. (2002). Using Euromonitor database in international marketing research. Journal of the Academy of Marketing Science, 30(2), 172-180. DOI: https://doi.org/10.1177/03079459994416

Kotu, V., & Deshpande, B. (2018). Data Science: concepts and practice. Morgan Kaufmann. DOI: https://doi.org/10.1016/B978-0-12-814761-0.00002-2

Luzuriaga, E. S. (2018). Brand asset valuator de Young & Rubicam como modelo de evaluación de marca. Espirales revista multidisciplinaria de investigación, 2(22), 8-28.

Shuldiner, A. (2019). Raising Them Right: AI and the Internet of Big Things. En Lawless, W., Mittu, R., Sofge, D., Moskowitz, I. S., & Russell, S. (Eds.). Artificial Intelligence for the Internet of Everything (pp. 139-143). Academic Press. https://doi.org/10.1016/B978-0-12-817636-8.00008-9 DOI: https://doi.org/10.1016/B978-0-12-817636-8.00008-9

Maté Jiménez, C. (2014). Big data. Un nuevo paradigma de análisis de datos. Repositorio Universidad Pontificia Comillas. Madrid.

McCorduck, P., & Cfe, C. (2004). Machines who think: A personal inquiry into the history and prospects of artificial intelligence. CRC Press. DOI: https://doi.org/10.1201/9780429258985

McLuhan, M. (1972). La Galaxia Gutenberg. Editorial Aguilar.

Ndungu, P. (2021). Effects of Strategic Marketing On Market Penetration of General Insurance Companies in Kenya. [Doctoral dissertation] Kirinyaga University.

Osterwalder, A., & Pigneur, Y. (2011). Generación de modelos de negocio. Deusto.

Pérez Pons, E., Parra Domínguez, J., Marquez, S., Manzano, S., & Herrera Santos, J. (2022). El big data: oportunidades, casos de uso y retos. https://gredos.usal.es/handle/10366/149117 DOI: https://doi.org/10.14201/0AQ0311117123

Prescott, M. E. (2014). Big data and competitive advantage at Nielsen. Management Decision, 52(3), 573-601. https://doi.org/10.1108/MD-09-2013-0437 DOI: https://doi.org/10.1108/MD-09-2013-0437

Raj, P., & Evangeline, P. (2020). The Digital Twin Paradigm for Smarter Systems and Environments: The Industry Use Cases. Academic Press. DOI: https://doi.org/10.1016/bs.adcom.2019.09.006

Romero F., Garcia O., & Granados O. (2019). Big data y servicios de computación en la nube: instrumentos para la estrategia organizacional y tecnológica. En Las tecnologías de la información como base de la competitividad, (pp 145-169). Universidad Externado de Colombia. DOI: https://doi.org/10.2307/j.ctv1k03r21.8

Sánchez Riaño, V. (2021). Pragmaticismo y creencia en la planeación estratégica publicitaria. Peirce en Hispanoamérica. DOI: https://doi.org/10.2307/j.ctv2p5zwsk.11

Sánchez Riaño, V., Díaz, C., Ludeña, C., Suárez Báez, L. C., & Sojo, J. (2018). Towards automated advertising strategy definition based on analytics. En International Conference on Applied Informatics (pp. 45-59). Springer, Cham. https://doi.org/10.1007/978-3-030-01535-0_4 DOI: https://doi.org/10.1007/978-3-030-01535-0_4

Santos, Z. R., Cheung, C. M., Coelho, P. S., & Rita, P. (2022). Consumer engagement in social media brand communities: A literature review. International Journal of Information Management, 63, 102457. https://doi.org/10.1016/j.ijinfomgt.2021.102457 DOI: https://doi.org/10.1016/j.ijinfomgt.2021.102457

Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the turing test. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6710-5_3 DOI: https://doi.org/10.1007/978-1-4020-6710-5_3

Verma, S., Sharma, R., Deb, S., & Maitra, D. (2021). Artificial intelligence in marketing: Systematic review and future research direction. International Journal of Information Management Data Insights, 1(1), 100002. https://doi.org/10.1016/j.jjimei.2020.100002 DOI: https://doi.org/10.1016/j.jjimei.2020.100002

Wu, L., Dodoo, N. A., Wen, T. J., & Ke, L. (2022). Understanding Twitter conversations about artificial intelligence in advertising based on natural language processing. International Journal of Advertising, 41(4), 685-702. https://doi.org/10.1080/02650487.2021.1920218 DOI: https://doi.org/10.1080/02650487.2021.1920218

Descargas

Publicado

2022-11-17

Cómo citar

Sánchez-Riaño, V., Suarez Baez, L. C., Garcia-Bedoya, O. ., & Sojo-Gomez, J. R. (2022). Variables para la fase diagnóstica de un software piloto de planeación estratégica. VISUAL REVIEW. International Visual Culture Review Revista Internacional De Cultura Visual, 12(3), 1–15. https://doi.org/10.37467/revvisual.v9.3748