Impact of predictive marketing based on Artificial Intelligence

Transforming communication and sales strategies in SM

Authors

  • Aitor Gil García Universidad Camilo José Cela
  • África Presol Herrero Universidad Camilo José Cela

DOI:

https://doi.org/10.62161/revvisual.v17.5394

Keywords:

Predictive marketing, Artificial Intelligence, Startups, SMEs, Communication strategies, Sales

Abstract

This article analyzes the impact of predictive marketing based on Artificial Intelligence (AI) in startups and SMEs, emphasizing its role in optimizing communication and sales strategies. Using a mixed-methodological approach that includes semi-structured interviews and questionnaires, significant improvements are identified in the personalization of customer interactions, as well as an average increase of 25,4% in conversion rates. The results indicate that companies adopting AI not only optimize resources and enhance their strategic capacity but also achieve a competitive advantage in an ever-evolving digital environment. Despite the benefits, ethical and organizational challenges are presented, such as the lack of skilled personnel and data management, necessitating solutions that promote ethical and effective implementation.

Downloads

Download data is not yet available.

References

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology. 3. 77-101. https://doi.org/10.1191/1478088706qp063oa DOI: https://doi.org/10.1191/1478088706qp063oa

Brynjolfsson, E., & McAfee, A. (2017). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W.W. Norton & Company.

Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334), 183–186. https://doi.org/10.1126/science.aal4230 DOI: https://doi.org/10.1126/science.aal4230

Chaffey, D., & Ellis-Chadwick, F. (2019). Digital marketing: Strategy, implementation and practice. Pearson.

Chatterjee, S., Chaudhuri, R., Vrontis, D., Thrassou, A., & Ghosh, S. K. (2021). Adoption of artificial intelligence-integrated CRM systems in agile organizations in India. Technological Forecasting and Social Change, 168, 120783, https://doi.org/10.1016/j.techfore.2021.120783 DOI: https://doi.org/10.1016/j.techfore.2021.120783

Chintalapati, S., & Pandey, S. (2021). Artificial intelligence in marketing: A systematic literature review. International Journal of Market Research. 64. 147078532110184. https://doi.org/10.1177/14707853211018428 DOI: https://doi.org/10.1177/14707853211018428

Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). SAGE Publications.

Creswell, J. W., & Plano Clark, V. L. (2011). Designing and conducting mixed methods research. SAGE Publications.

Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. J. of the Acad. Mark. Sci. 48, 24–42. https://doi.org/10.1007/s11747-019-00696-0 DOI: https://doi.org/10.1007/s11747-019-00696-0

Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116. https://www.bizjournals.com/boston/news/2018/01/09/hbr-artificial-intelligence-for-the-real-world.html

Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., Medaglia, R., Le Meunier-FitzHugh, K., Le Meunier-FitzHugh, L. C., Misra, S., Mogaji, E., Sharma, S. K., Singh, J. B., Raghavan, V., Raman, R., Rana, N. P., Samothrakis, S., Spencer, J., Tamilmani, K., Tubadji, A., Walton, P., Williams, M. D., & ... (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002 DOI: https://doi.org/10.1016/j.ijinfomgt.2019.08.002

Field, A. (2018). Discovering statistics using IBM SPSS statistics (5th ed.). SAGE Publications.

Floridi, L. (2019). The ethics of artificial intelligence: Principles, Challenges, and Opportunities. Oxford University Press.

Gartner, Inc. (2019). Magic quadrant for data management solutions for analytics. Retrieved from https://www.gartner.com/en/documents/3898487

Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review. 61. 000812561986492. http://doi.org/10.1177/0008125619864925 DOI: https://doi.org/10.1177/0008125619864925

Hair, J. F., Page, M., & Brunsveld, N. (2019). Essentials of business research methods (4th ed.). Routledge. https://doi.org/10.4324/9780429203374 DOI: https://doi.org/10.4324/9780429203374

Islam, J. U., Hollebeek, L. D., Rahman, Z., Khan, I., & Rasool, A. (2019). Customer engagement in the service context: An empirical investigation of the construct, its antecedents and consequences. Journal of Retailing and Consumer Services, 50, 277-285. https://doi.org/10.1016/j.jretconser.2019.05.018 DOI: https://doi.org/10.1016/j.jretconser.2019.05.018

Jarek, K., & Mazurek, G. (2019). Marketing and Artificial Intelligence. Central European Business Review. 8. 46-55. https://doi.org/10.18267/j.cebr.213 DOI: https://doi.org/10.18267/j.cebr.213

King, N. (2004). Using interviews in qualitative research. In C. Cassell & G. Symon (Eds.), Essential guide to qualitative methods in organizational research (pp. 11-22). SAGE Publications. DOI: https://doi.org/10.4135/9781446280119.n2

Lashitew, A. A. (2021). Corporate uptake of artificial intelligence and its societal impacts: A cross-country comparison. SSRN. https://doi.org/10.2139/ssrn.3789574 DOI: https://doi.org/10.2139/ssrn.3789574

Lilien, G. L., & Rangaswamy, A. (2001). Marketing engineering: Computer-assisted marketing analysis and planning. Prentice Hall.

McKinsey & Company. (2021). The state of AI in 2021. Retrieved from https://www.mckinsey.com/ capabilities/quantumblack/our-insights/global-survey-the-state-of-ai-in-2021

Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Qualitative data analysis: A methods sourcebook (3rd ed.). SAGE Publications.

Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 1-21. https://doi.org/10.1177/205395171667967 DOI: https://doi.org/10.1177/2053951716679679

O'Neil, C. (2017). Cathy O´Neil. Weapons of math destruction: How big data increases inequality and threatens democracy. Crown Publishing Group. https://doi.org/10.5860/crl.78.3.403 DOI: https://doi.org/10.5860/crl.78.3.403

Peralta, C. (2024). Big data analysis and its impact on the marketing industry: a systematic review. Indonesian Journal of Electrical Engineering and Computer Science. 35. 1032. https://doi.org/10.11591/ijeecs.v35.i2.pp1032-1040 DOI: https://doi.org/10.11591/ijeecs.v35.i2.pp1032-1040

Robson, C., & McCartan, K. (2017). Real World Research, 4th Edition.

Rust, Roland & Huang, Ming-Hui. (2014). The Service Revolution and the Transformation of Marketing Science. Marketing Science. 33. 206-221. https://doi.org/10.1287/mksc.2013.0836 DOI: https://doi.org/10.1287/mksc.2013.0836

Singh, M. (2024). Machine Learning in Marketing Analytics. International Journal of Enhanced Research in Management & Computer Applications, 13, 2319-7471.2319-7471. https://doi.org/10.55948/ IJERMCA.2024.0410

Syam, N., & Sharma, A. (2018). Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice. Industrial Marketing Management, 69, 135-146. https://doi.org/10.1016/j.indmarman.2017.12.019 DOI: https://doi.org/10.1016/j.indmarman.2017.12.019

Tene, O., & Polonetsky, J. (2012). Privacy in the age of big data: A time for big decisions. Stanford Law Review Online, 64(63), 63-69.

Venkatesan, R., Petersen, J., & Guissoni, L. (2018). Measuring and managing customer engagement value through the customer journey. In Handbook of customer engagement (pp. 59–83). https://doi.org/10.1007/978-3-319-61985-9_3 DOI: https://doi.org/10.1007/978-3-319-61985-9_3

Published

2025-02-07

How to Cite

Gil García, A., & Presol Herrero, África. (2025). Impact of predictive marketing based on Artificial Intelligence : Transforming communication and sales strategies in SM. VISUAL REVIEW. International Visual Culture Review Revista Internacional De Cultura Visual, 17(1), 165–178. https://doi.org/10.62161/revvisual.v17.5394

Issue

Section

Research articles