Integration of Text Mining and Complex Social Network Analysis for Quantitative Characterization of Discursive Evolution in Artificial Intelligence Through Streaming Platforms

Authors

DOI:

https://doi.org/10.62161/revvisual.v16.5288

Keywords:

Artificial Intelligence, Discursive Evolution, Text Mining, Social Network Analysis, Streaming Platforms

Abstract

This study provides a quantitative characterization of the discursive evolution in Artificial Intelligence (AI) across streaming platforms (such as YouTube), by integrating text mining and complex social network analysis. Using a comprehensive corpus from leading platforms, natural language processing algorithms were employed to analyze the textual content, identifying patterns, emerging themes, and shifts in discourse about AI. Concurrently, a social network analysis was conducted to examine the interaction structures and the influence of different actors in disseminating information. The findings reveal significant trends in the presentation and perception of AI, highlighting the evolution of specific themes, differences in perception among various groups, and the influence of factors such as technological advancements and global events. This analysis provides a deeper understanding of AI communication and perception in the digital realm, offering valuable insights for academics, communicators, and policymakers in the field of Artificial Intelligence.

Downloads

Download data is not yet available.

References

Bernstein, R., Osadchy, M., Keren, D., & Schuster, A. (2019). LDA classifier monitoring in distributed streaming systems. Journal of Parallel and Distributed Computing, 123, 156-167. https://doi.org/10.1016/j.jpdc.2018.09.017 DOI: https://doi.org/10.1016/j.jpdc.2018.09.017

Campbell, M., Cosgrove, J. A., Greated, C. A., Jack, S., & Rockliff, D. (2000). Review of LDA and PIV applied to the measurement of sound and acoustic streaming. Optics & Laser Technology, 32(7), 629-639. https://doi.org/10.1016/S0030-3992(00)00091-8 DOI: https://doi.org/10.1016/S0030-3992(00)00091-8

Campis, E. S. (2023). Aplicación del Análisis de Redes Sociales para el estudio de las redes de comunicación en línea: Evidencia empírica de Twitter. EMPIRIA: Revista de Metodología de Ciencias Sociales. https://doi.org/10.5944/empiria.57.2023.36434 DOI: https://doi.org/10.5944/empiria.57.2023.36434

Gonzales, E. P. Z., Gallegos, W. L. A., Gallegos, W. L. A., Toia, A. M. del C., Rivera, R., & Condori, M. L. (2020). Depresión postparto en mujeres víctimas de violencia doméstica en la ciudad de Arequipa. null. https://doi.org/null

Gonzales, J. E., Ortega, Á. C., Blanco, R. R., & Diez, E. B. (2023). ANÁLISIS DE SENTIMIENTOS Y EMOCIONES SOBRE GASTRONOMÍA PERUANA USANDO MINERÍA DE TEXTO CON PYTHON. Hatun Yachay Wasi. https://doi.org/10.57107/hyw.v3i1.63 DOI: https://doi.org/10.57107/hyw.v3i1.63

Lau, J. H., Lau, J. H., Newman, D. J., Newman, D., Baldwin, T., & Baldwin, T. (2014). Machine Reading Tea Leaves: Automatically Evaluating Topic Coherence and Topic Model Quality. null. https://doi.org/10.3115/v1/e14-1056 DOI: https://doi.org/10.3115/v1/E14-1056

Lee, S. (2023). An Analysis on Major Issues of Medical Information on YouTube Platform Using LDA Topic Modeling. The Journal of the Korea Contents Association. https://doi.org/10.5392/jkca.2023.23.08.198 DOI: https://doi.org/10.5392/JKCA.2023.23.08.198

Li, D., Bi, Z., Han, X., Qu, Z., & Lyu, C. (2024). Extracting key topics from massive COVID-19 information on social networks: An integrated deep learning and LDA framework. High-Confidence Computing, 100213. https://doi.org/10.1016/j.hcc.2024.100213 DOI: https://doi.org/10.1016/j.hcc.2024.100213

Li, M., Lu, M., Akram, U., & Cheng, S. (2024). Understanding how customer social capital accumulation in brand communities: A gamification affordance perspective. Journal of Retailing and Consumer Services, 78, 103761. https://doi.org/10.1016/j.jretconser.2024.103761 DOI: https://doi.org/10.1016/j.jretconser.2024.103761

Morchid, M., Morchid, M., Linarès, G., & Linarès, G. (2013). A LDA-based method for automatic tagging of Youtube videos. Workshop on Image Analysis for Multimedia Interactive Services. https://doi.org/10.1109/wiamis.2013.6616126 DOI: https://doi.org/10.1109/WIAMIS.2013.6616126

Srikumar, N., & Srikumar, N. (2021). Feature Augmentation for Improved Topic Modeling of Youtube Lecture Videos using Latent Dirichlet Allocation. null. https://doi.org/10.21427/4ey6-qg08

Torres, V., & Moreta, O. E. (2023). Detección de ansiedad mediante minería de texto en la era de redes sociales: Revisión bibliográfica. Ciencia Huasteca Boletín Científico de la Escuela Superior de Huejutla. https://doi.org/10.29057/esh.v11i22.10879 DOI: https://doi.org/10.29057/esh.v11i22.10879

Torres-Cruz, F., & Mamani, Y. J. Y. (2022). Técnicas de inteligencia artificial en la valoración de la enseñanza virtual por estudiantes de nivel universitario. HUMAN Review International Humanities Review / Revista Internacional de Humanidades. https://doi.org/10.37467/revhuman.v11.3853 DOI: https://doi.org/10.37467/revhuman.v11.3853

Published

2024-07-29

How to Cite

Torres-Cruz, F., Yucra-Mamani, Y. J., Mayta-Quispe, M. F., & Ibañez-Quispe, V. (2024). Integration of Text Mining and Complex Social Network Analysis for Quantitative Characterization of Discursive Evolution in Artificial Intelligence Through Streaming Platforms. VISUAL REVIEW. International Visual Culture Review Revista Internacional De Cultura Visual, 16(5), 271–278. https://doi.org/10.62161/revvisual.v16.5288