Variables For the Diagnostic Fase of a Pilot Software of Strategic Planning
DOI:
https://doi.org/10.37467/revvisual.v9.3748Keywords:
Planning Strategy, Artificial Intelligence, Machine Learning, Data Mining, Software, Network SocietyAbstract
This article is a research result of the Strategic Planning Semiotic Model Project, financed by Jorge Tadeo Lozano University. The project seeks to establish variables for the diagnostic phase of a pilot Software that supports the processes of strategic advertising planning. The starting point was the analysis of the real cases with the Effie College Colombia 2018 and 2019 awards, especially the cases in which the research group obtained two gold awards. These cases let to establish requirements over the diagnostic phase for profiling the client's situation and brand context from four categories: markets, communication, people, and trends.
Downloads
References
Ambika, P. (2020). “Machine learning and deep learning algorithms on the Industrial Internet of Things (IIoT)”. Advances in computers, 117(1), 321-338. https://doi.org/10.1016/bs.adcom.2019.10.007 DOI: https://doi.org/10.1016/bs.adcom.2019.10.007
Castells, M. (1997). La era de la información. Volumen 1: La sociedad red. Alianza editorial.
Conway, F., & Siegelman, J. (2006). Dark hero of the information age: In search of Norbert Wiener, the father of cybernetics. Basic Books.
Deepa, N., Pham, Q. V., Nguyen, D. C., Bhattacharya, S., Prabadevi, B., Gadekallu, T. R., ... & Pathirana, P. N. (2022). A survey on blockchain for big data: approaches, opportunities, and future directions. Future Generation Computer Systems. 131, 209-226. https://doi.org/10.1016/j.future.2022.01.017 DOI: https://doi.org/10.1016/j.future.2022.01.017
Elbagir, S., & Yang, J. (2020). Sentiment analysis on Twitter with Python’s natural language toolkit and VADER sentiment analyzer. En Iong Ao et al. (Eds.) IAENG Transactions on Engineering Sciences: Special Issue for the International Association of Engineers Conferences 2019 (pp. 63-80). https://doi.org/10.1142/9789811215094_0005 DOI: https://doi.org/10.1142/9789811215094_0005
Fainmesser, I. P., Olié Lauga, D., & Ofek, E. (2021). Ratings, reviews, and the marketing of new products. Management Science, 67(11), 7023-7045. https://doi.org/10.1287/mnsc.2020.3848 DOI: https://doi.org/10.1287/mnsc.2020.3848
Felt, M. (2016). Social media and the social sciences: How researchers employ Big Data analytics. Big Data & Society, 3(1), 1-15. https://doi.org/10.1177/2053951716645828 DOI: https://doi.org/10.1177/2053951716645828
García, A. (2012). Inteligencia Artificial. Fundamentos, práctica y aplicaciones. Rc Libros.
García O., Granados O., & Romero F. (2018). Social Media Competitive Intelligence: Measurement and Visualization from a Higher Education Organization. En Florez H., Diaz C., & Chavarriaga J. (Eds). Applied Informatics. ICAI 2018. Communications in Computer and Information Science, 942. https://doi.org/10.1007/978-3-030-01535-0_3 DOI: https://doi.org/10.1007/978-3-030-01535-0_3
Granados O, Garcia-Bedoya, O., & Romero F. (2022). Banks n Twitter: From Single Message To Visual Analytics Strategies, Journal of Engineering Science and Technology, 17(1), 138-155. http://hdl.handle.net/20.500.12495/6792
Hughes, J. D., Russcher, M. J., Langevin, C. D., Morway, E. D., & McDonald, R. R. (2022). The MODFLOW Application Programming Interface for simulation control and software interoperability. Environmental Modelling & Software, 148, 105257. https://doi.org/10.1016/j.envsoft.2021.105257 DOI: https://doi.org/10.1016/j.envsoft.2021.105257
Hutter, F., Kotthoff, L., & Vanschoren, J. (2019). Automated machine learning: methods, systems, challenges. Springer Nature. http://library.oapen.org/handle/20.500.12657/23012 DOI: https://doi.org/10.1007/978-3-030-05318-5
Jagodič, G., & Šinkovec, M. (2021). Involvement of Artificial Intelligence in Modern Society. International Journal of Management, Knowledge and Learning, 10, 267-273. DOI: https://doi.org/10.53615/2232-5697.10.267-273
Kotabe, M. (2002). Using Euromonitor database in international marketing research. Journal of the Academy of Marketing Science, 30(2), 172-180. DOI: https://doi.org/10.1177/03079459994416
Kotu, V., & Deshpande, B. (2018). Data Science: concepts and practice. Morgan Kaufmann. DOI: https://doi.org/10.1016/B978-0-12-814761-0.00002-2
Luzuriaga, E. S. (2018). Brand asset valuator de Young & Rubicam como modelo de evaluación de marca. Espirales revista multidisciplinaria de investigación, 2(22), 8-28.
Shuldiner, A. (2019). Raising Them Right: AI and the Internet of Big Things. En Lawless, W., Mittu, R., Sofge, D., Moskowitz, I. S., & Russell, S. (Eds.). Artificial Intelligence for the Internet of Everything (pp. 139-143). Academic Press. https://doi.org/10.1016/B978-0-12-817636-8.00008-9 DOI: https://doi.org/10.1016/B978-0-12-817636-8.00008-9
Maté Jiménez, C. (2014). Big data. Un nuevo paradigma de análisis de datos. Repositorio Universidad Pontificia Comillas. Madrid.
McCorduck, P., & Cfe, C. (2004). Machines who think: A personal inquiry into the history and prospects of artificial intelligence. CRC Press. DOI: https://doi.org/10.1201/9780429258985
McLuhan, M. (1972). La Galaxia Gutenberg. Editorial Aguilar.
Ndungu, P. (2021). Effects of Strategic Marketing On Market Penetration of General Insurance Companies in Kenya. [Doctoral dissertation] Kirinyaga University.
Osterwalder, A., & Pigneur, Y. (2011). Generación de modelos de negocio. Deusto.
Pérez Pons, E., Parra Domínguez, J., Marquez, S., Manzano, S., & Herrera Santos, J. (2022). El big data: oportunidades, casos de uso y retos. https://gredos.usal.es/handle/10366/149117 DOI: https://doi.org/10.14201/0AQ0311117123
Prescott, M. E. (2014). Big data and competitive advantage at Nielsen. Management Decision, 52(3), 573-601. https://doi.org/10.1108/MD-09-2013-0437 DOI: https://doi.org/10.1108/MD-09-2013-0437
Raj, P., & Evangeline, P. (2020). The Digital Twin Paradigm for Smarter Systems and Environments: The Industry Use Cases. Academic Press. DOI: https://doi.org/10.1016/bs.adcom.2019.09.006
Romero F., Garcia O., & Granados O. (2019). Big data y servicios de computación en la nube: instrumentos para la estrategia organizacional y tecnológica. En Las tecnologías de la información como base de la competitividad, (pp 145-169). Universidad Externado de Colombia. DOI: https://doi.org/10.2307/j.ctv1k03r21.8
Sánchez Riaño, V. (2021). Pragmaticismo y creencia en la planeación estratégica publicitaria. Peirce en Hispanoamérica. DOI: https://doi.org/10.2307/j.ctv2p5zwsk.11
Sánchez Riaño, V., Díaz, C., Ludeña, C., Suárez Báez, L. C., & Sojo, J. (2018). Towards automated advertising strategy definition based on analytics. En International Conference on Applied Informatics (pp. 45-59). Springer, Cham. https://doi.org/10.1007/978-3-030-01535-0_4 DOI: https://doi.org/10.1007/978-3-030-01535-0_4
Santos, Z. R., Cheung, C. M., Coelho, P. S., & Rita, P. (2022). Consumer engagement in social media brand communities: A literature review. International Journal of Information Management, 63, 102457. https://doi.org/10.1016/j.ijinfomgt.2021.102457 DOI: https://doi.org/10.1016/j.ijinfomgt.2021.102457
Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the turing test. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6710-5_3 DOI: https://doi.org/10.1007/978-1-4020-6710-5_3
Verma, S., Sharma, R., Deb, S., & Maitra, D. (2021). Artificial intelligence in marketing: Systematic review and future research direction. International Journal of Information Management Data Insights, 1(1), 100002. https://doi.org/10.1016/j.jjimei.2020.100002 DOI: https://doi.org/10.1016/j.jjimei.2020.100002
Wu, L., Dodoo, N. A., Wen, T. J., & Ke, L. (2022). Understanding Twitter conversations about artificial intelligence in advertising based on natural language processing. International Journal of Advertising, 41(4), 685-702. https://doi.org/10.1080/02650487.2021.1920218 DOI: https://doi.org/10.1080/02650487.2021.1920218
Downloads
Published
How to Cite
Issue
Section
License
Those authors who publish in this journal accept the following terms:
- Authors will keep the moral right of the work and they will transfer the commercial rights.