Revisión sobre la evidencia psicológica y neuronal de la teoría del Valle Inquietante

Autores/as

DOI:

https://doi.org/10.62161/sauc.v11.5838

Palabras clave:

Valle Inquietante, Respuesta emocional, Neuroimagen, Percepción, Rostro humano, Inteligencia artificial

Resumen

El artículo revisa la evidencia psicológica y neuronal sobre la teoría del Valle Inquietante propuesta por Masahiro Mori en 1970. Esta teoría sugiere que la afinidad hacia los robots aumenta con su realismo hasta cierto punto, donde la respuesta emocional se vuelve negativa. Estudios basados en neuroimagen confirman que este fenómeno surge de conflictos en el procesamiento cerebral de la percepción. El avance en tecnologías ha permitido crear robots y personajes animados más realistas, redefiniendo nuestra relación con la tecnología. El estudio se enfoca en la importancia del rostro humano como estímulo clave en la identificación social, un tema relevante ante el desarrollo de la inteligencia artificial generativa de imágenes, que requiere mayor precisión en la captura de características humanas. La forma en que manejemos este fenómeno influirá en el futuro de nuestra relación con la tecnología.

Descargas

Los datos de descargas todavía no están disponibles.

Estadísticas globales ℹ️

Totales acumulados desde su publicación
8
Visualizaciones
3
Descargas
11
Total
Descargas por formato:
PDF 3 PDF (English) 0

Citas

Bagdasarian, M. T., Hilsmann, A., Eisert, P., Curio, G., Müller, K. R., Wiegand, T., & Bosse, S. (2020, May). EEG-based assessment of perceived realness in stylized face images. Twelfth international Conference on Quality of multimedia experience (QoMEX) (pp. 1-4). IEEE.

Cavanagh, P. (2005). The artist as neuroscientist. Nature, 434(7031), 301-307, https://doi.org/10.1038/434301a

Cha, H. S., Chang, W. D., Shin, Y. S., Jang, D. P., & Im, C. H. (2015). EEG-based neurocinematics: challenges and prospects. Brain-Computer Interfaces, 2(4), 186-192. https://doi.org/10.1080/2326263X.2015.1099091

Cheetham, M., Suter, P., & Jäncke, L. (2011). The human likeness dimension of the «uncanny valley hypothesis»: behavioral and functional MRI findings. Frontiers in human neuroscience, 5, 126. https://doi.org/10.3389/fnhum.2011.00126

Cheetham, M., & Jancke, L. (2013). Perceptual and category processing of the uncanny valley hypothesis' dimension of human likeness: some methodological issues. Journal of visualized experiments: JoVE, (76), 4375. https://doi.org/10.3791/4375

Chen, J., Zhang, G., Chiou, W., Laidlaw, D. H., & Auchus, A. P. (2020). Measuring the Effects of Scalar and Spherical Colormaps on Ensembles of DMRI Tubes. IEEE Transactions on Visualization and Computer Graphics, 26(9), 2818–2833. https://doi.org/10.1109/TVCG.2019.2898438

Chen, Y., Stephani, T., Bagdasarian, M. T., Hilsmann, A., Eisert, P., Villringer, A., Bosse, S., Gaebler, M., & Nikulin, V. V. (2024). Realness of face images can be decoded from non-linear modulation of EEG responses. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-56130-1

de Borst, A. W., & de Gelder, B. (2015). Is it the real deal? Perception of virtual characters versus humans: an affective cognitive neuroscience perspective. Frontiers in psychology, 6, 576. https://doi.org/10.3389/fpsyg.2015.00576

Diel, A., & Lewis, M. (2024). Rethinking the uncanny valley as a moderated linear function: Perceptual specialization increases the uncanniness of facial distortions. Computers in Human Behavior, 157, 108254. https://doi.org/10.1016/j.chb.2024.108254

Duchaine, B., & Yovel, G. (2015). A revised neural framework for face processing. Annual review of vision science, 1(1), 393-416. https://doi.org/10.1146/annurev-vision-082114-035518

Geller, T. (2008). Overcoming the uncanny valley. IEEE computer graphics and applications, 28(4), 11-17. https://doi.org/10.1109/MCG.2008.79

Ghazanfar, A. A., & Shepherd, S. V. (2011). Monkeys at the movies: what evolutionary cinematics tells us about film. Projections, 5(2), 1-25. https://doi.org/10.3167/proj.2011.050202

Igaue, T., & Hayashi, R. (2023). Signatures of the uncanny valley effect in an artificial neural network. Computers in Human Behavior, 146, 107811. https://doi.org/10.1016/j.chb.2023.107811

Kätsyri, J., Förger, K., Mäkäräinen, M., & Takala, T. (2015). A review of empirical evidence on different uncanny valley hypotheses: support for perceptual mismatch as one road to the valley of eeriness. Frontiers in psychology, 6, 390. https://doi.org/10.3389/fpsyg.2015.00390

Khare, S. K., Blanes-Vidal, V., Nadimi, E. S., & Acharya, U. R. (2024). Emotion recognition and artificial intelligence: A systematic review (2014–2023) and research recommendations. Information fusion, 102, 102019. https://doi.org/10.1016/j.inffus.2023.102019

Kuang, B., Li, X., Li, X., Lin, M., Liu, S., & Hu, P. (2021). The effect of eye gaze direction on emotional mimicry: A multimodal study with electromyography and electroencephalography. NeuroImage, 226, 117604. https://doi.org/10.1016/j.neuroimage.2020.117604

Ladwig, P., Ebertowski, R., Pech, A., Dörner, R., & Geiger, C. (2023). Towards a Pipeline for Real-Time Visualization of Faces for VR-based Telepresence and Live Broadcasting Utilizing Neural Rendering., 2301.01490. http://arxiv.org/abs/2301.01490

MacGillivray, C. (2007, August). How psychophysical perception of motion and image relates to animation practice. En Computer Graphics, Imaging and Visualisation (CGIV 2007) (pp. 81-88). IEEE. https://doi.org/10.1109/CGIV.2007.48

Bagdasarian, M. T., Hilsmann, A., Eisert, P., Curio, G., Müller, K. R., Wiegand, T., & Bosse, S. (2020, May). EEG-based assessment of perceived realness in stylized face images. In 2020 twelfth international Conference on Quality of multimedia experience (QoMEX) (pp. 1-4). IEEE. https://doi.org/10.1109/QoMEX48832.2020.9123145

Mones, B., & Friedman, S. (2011, March). Veering around the Uncanny Valley: Revealing the underlying structure of facial expressions. In Face and Gesture 2011 (pp. 345-345). IEEE Computer Society. https://doi.org/10.1109/FG.2011.5771423

Mori, M. (1970). Bukimi no tani [The uncanny valley]. Energy, 7, 33.

Mori, M., MacDorman, K. F., & Kageki, N. (2012). The uncanny valley. IEEE Robotics and Automation Magazine, 19(2), 98–100. https://doi.org/10.1109/MRA.2012.2192811

Mustafa, M., & Magnor, M. (2016, December). EEG based analysis of the perception of computer-generated faces. In Proceedings of the 13th european conference on visual media production (cvmp 2016) (pp. 1-10). https://doi.org/10.1145/2998559.2998563

Ota, C., & Nakano, T. (2021). Neural correlates of beauty retouching to enhance attractiveness of self-depictions in women. Social Neuroscience, 16(2), 121-133. https://doi.org/10.1080/17470919.2021.1873178

Pennefather, P. P. (2023). Creative prototyping with generative AI: Augmenting creative workflows with generative AI. New York: Apress. https://doi.org/10.1007/978-1-4842-9579-3_10

Petrova, E. (2021). The Image of the Information Society in Culture: Optimism Gives Way to Pessimism?. Voprosy filosofii, (8), 25-35. https://doi.org/10.21146/0042-8744-2021-8-25-35

Proverbio, A. M., Vanutelli, M. E., & Viganò, S. (2019). Remembering faces: The effects of emotional valence and temporal recency. Brain and Cognition, 135, 103584. https://doi.org/10.1016/j.bandc.2019.103584

Reuten, A., Van Dam, M., & Naber, M. (2018). Pupillary responses to robotic and human emotions: The uncanny valley and media equation confirmed. Frontiers in psychology, 9, 774. https://doi.org/10.3389/fpsyg.2018.00774

Rosenthal-Von der Pütten, A. M., Krämer, N. C., Maderwald, S., Brand, M., & Grabenhorst, F. (2019). Neural mechanisms for accepting and rejecting artificial social partners in the uncanny valley. Journal of Neuroscience, 39(33), 6555-6570. https://doi.org/10.1523/JNEUROSCI.2956-18.2019

Sadeh, B., Podlipsky, I., Zhdanov, A., & Yovel, G. (2010). Event‐related potential and functional MRI measures of face‐selectivity are highly correlated: a simultaneous ERP‐fMRI investigation. Human brain mapping, 31(10), 1490-1501. https://doi.org/10.1002/hbm.20952

Sarigul, B., & Urgen, B. A. (2023). Audio–visual predictive processing in the perception of humans and robots. International Journal of Social Robotics, 15(5), 855-865. https://doi.org/10.1007/s12369-023-00990-6

Sasaki, K., Ihaya, K., & Yamada, Y. (2017). Avoidance of novelty contributes to the uncanny valley. Frontiers in psychology, 8, 1792. https://doi.org/10.3389/fpsyg.2017.01792

Saygin, A. P., Chaminade, T., & Ishiguro, H. (2010). The perception of humans and robots: Uncanny hills in parietal cortex. Proceedings of the Annual Meeting of the Cognitive Science Society, 32(32).

Saygin, A. P., Chaminade, T., Ishiguro, H., Driver, J., & Frith, C. (2012). The thing that should not be: Predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Social Cognitive and Affective Neuroscience, 7(4), 413–422. https://doi.org/10.1093/scan/nsr025

Schindler, S., Zell, E., Botsch, M., & Kissler, J. (2017). Differential effects of face-realism and emotion on event-related brain potentials and their implications for the uncanny valley theory. Scientific reports, 7(1), 45003. https://doi.org/10.1038/srep45003

Seyama, J. I., & Nagayama, R. S. (2009). Probing the uncanny valley with the eye size aftereffect. Presence: Teleoperators and Virtual Environments, 18(5), 321-339. https://doi.org/10.1162/pres.18.5.321

Seymour, M., Riemer, K., & Kay, J. (2017). Interactive realistic digital avatars-revisiting the uncanny valley, Human-Computer Interaction: Information design utilizing behavioral, neurophysiological, and design science methods, 50(4), 547-556. http://hdl.handle.net/10125/41216

Urgen, B. A., Kutas, M., & Saygin, A. P. (2018). Uncan ny valley as a window into predictive processing in the social brain. Neuropsychologia, 114, 181-185. https://doi.org/10.1016/j.neuropsychologia.2018.04.027

Vaitonytė, J., Alimardani, M., & Louwerse, M. M. (2023). Scoping review of the neural evidence on the uncanny valley. Computers in Human Behavior Reports, 9, 100263. https://doi.org/10.1016/j.chbr.2022.100263

Wang, Y., & Quadflieg, S. (2015). In our own image? Emotional and neural processing differences when observing human–human vs human–robot interactions. Social cognitive and affective neuroscience, 10(11), 1515-1524. https://doi.org/10.1093/scan/nsv043

Wilson, V. A., Kade, C., Moeller, S., Treue, S., Kagan, I., & Fischer, J. (2020). Macaque gaze responses to the primatar: a virtual macaque head for social cognition research. Frontiers in Psychology, 11, 1645. https://doi.org/10.3389/fpsyg.2020.01645

Yashin, A. S. (2023, September). A Challenge for Bringing a BCI Closer to Motor Control: The «Interface Uncanny Valley» Hypothesis. In 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB) (pp. 242-247). IEEE. https://doi.org/10.1109/CSGB60362.2023.10329830

Publicado

2025-08-01

Cómo citar

Casas Arias, M. (2025). Revisión sobre la evidencia psicológica y neuronal de la teoría del Valle Inquietante. Street Art & Urban Creativity, 11(5), 15–31. https://doi.org/10.62161/sauc.v11.5838

Número

Sección

Artículos del monográfico