Modeling and analytics tools for electric mobility

Use-cases at the urban level

Authors

DOI:

https://doi.org/10.62161/sauc.v11.6017

Keywords:

Transportation, Electric mobility, Electric vehicles, Flexibility, Data, Vehicle-to-Grid, Digital tools, DLR-MobilityLab, Modeling, Smart City, Artificial Intelligence, Machine Learning

Abstract

The integration of the transportation and electricity sectors presents both a challenge and an opportunity for the European energy system. On the one hand, large amounts of electricity are needed to power the electric vehicles, thereby, requiring a more accurate prediction of the demand in short-term and in the future. On the other hand, utilizing the Vehicle-to-Grid technology can provide grid services. Designing, management, and planning of the infrastructure requires sophisticated data-driven tools. This paper highlights a selection of the existing tools of the DLR (German Aerospace Center) developed for the modeling and analysis of the integrated electric mobility sector.

Downloads

Download data is not yet available.

Global Statistics ℹ️

Cumulative totals since publication
27
Views
12
Downloads
39
Total
Downloads by format:
PDF (Español (España)) 6 PDF 6

References

ACEA (2024). Charging ahead: accelerating the roll-out of EU electric vehicle charging infrastructure.

Bergfeld, M; Hoyer-Klick, C.; Rottoli, M.; Anderson, J. E., (2024), Bidirectional Charging as a Contribution to the Energy and Mobility Transitions: a Methodology for Modelling. 22nd IEEE Mediterranean Electrotechnical Conference, MELECON 2024. IEEE. 22nd IEEE Mediterranean Electrotechnical Conference. https://doi.org/10.1109/MELECON56669.2024.10608601

Bosch, E., Luther, A.R. & Ihme, K., (2025) Travel experience in public transport: Experience sampling and cardiac activity data for spatial analysis. Sci Data 12, 633 (2025). https://doi.org/10.1038/s41597-025-04955-4

Clarke, L. & Wei, Y-M. (2022). Energy Systems. In: IPCC, 2022. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. P.R. Shukla et al. (eds.). Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: https://doi.org/10.1017/9781009157926.008

Deb, S. (2021). Machine Learning for Solving Charging Infrastructure Planning Problems: A Comprehensive Review. Energies, 14(23), 7833. https://doi.org/10.3390/en14237833

DLR (German Aerospace Center) (2022). DATAMOST project. https://www.dlr.de/de/eoc/forschung-transfer/projekte-und-missionen/datamost

DLR (German Aerospace Center) (2025), MoDa project. https://www.dlr.de/de/forschung-und-transfer/projekte-und-missionen/moda

DLR (German Aerospace Center) (2025a). SUMO, https://sumo.dlr.de/docs/index.html

DLR (German Aerospace Center) (2025b). DLR, About Us. https://www.dlr.de/en/dlr/about-us

DLR (German Aerospace Center) (2025c). DLR VF, About Us. https://www.dlr.de/en/vf/about-us/the-institute

DLR (German Aerospace Center) (2025d). DLR VE, About Us, https://www.dlr.de/en/ve/about-us/institute-of-networked-energy-systems

EC (European Commission) (2019). Clean Vehicles Directive. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L1161

EC (European Commission) (2021). European Climate Law. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1119

EC (European Commission) (2023). Renewable Energy Directive. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023L2413&qid=1699364355105

Garwa, N. and K. R. Niazi, (2019), “Impact of EV on Integration with Grid System – A Review”, 8th International Conference on Power Systems (ICPS), Jaipur, India, 2019, pp. 1-6, doi: https://doi.org/10.1109/ICPS48983.2019.9067587.

Gonzalez, F., Petit, M., Perez, Y. (2019). Electric Vehicles as Flexibility Providers for Distribution Systems. A Techno-Economic Review. 25th International Conference and Exhibition on Electricity Distribution, Jun 2019, Madrid, Spain. ⟨hal-02283355⟩

Grunewald, Erik und Maertens, Sven und Viergutz, Kathrin Karola und Wegener, Jan und Scheier, Benedikt (2025) SnackTrack: Digitaler Zwilling für Turbo-Umstiege – Imbissbestellung leicht gemacht! In: Proff, H. (eds) New Players in Mobility, 1, Seiten 607-621. Springer Gabler, Wiesbaden. 16. Wissenschaftsforum Mobilität, 2024-06-13, Duisburg, Deutschland. https://doi.org/10.1007/978-3-658-46485-1_3

Hasselwander, Samuel; Rettich, Julian; Schmid, Stephan; Siefkes, Tjark (2025) How will future BEV models develop? Market potential of different battery technologies assessed by a ML-based manufacturer agent. Journal of Energy Storage, 131(A). https://doi.org/10.1016/j.est.2025.117195

He, S. Y., Kuo, Y.-H., & Sun, K. K. (2022). The spatial planning of public electric vehicle charging infrastructure in a high-density city using a contextualised location-allocation model. Transportation Research Part A: Policy and Practice, 160, 21–44. https://doi.org/10.1016/j.tra.2022.02.012

Heinrichs, Matthias (2011) TAPAS: Travel-Activity-Pattern Simulation - Parallelisiertes Mikroskopisches Verkehrsnachfragemodell. In: Next GEneration Forum 2011, Seite 74. Deutsches Zentrum für Luft und Raumfahrt e.V.. Next Generation Forum 2011, 2011-09-26 - 2011-09-27, Oberpfaffenhofen, Deutschland., https://github.com/DLR-VF/TAPAS

Herwartz-Polster, S; J. Pagenkopf, J. Kaiser, M. Freienhofer, (2024), "Power Forecast of Overhead Catenary Islands in Battery Electric Train Operation: Case Study of Pfalznetz", in J. Pombo, (Editor), "Proceedings of the Sixth International Conference on Railway Technology: Research, Development and Maintenance", Civil-Comp Press, Edinburgh, UK, Online volume: CCC 7, Paper 12.4, 2024. https://doi.org/10.4203/ccc.7.12.4

Kervall, M. & Pålsson, H., 2022. Barriers to change in urban freight systems: a systematic literature review. European Transport Research Review, 14(1), p.29. Available at: https://doi.org/10.1186/s12544-022-00553-2.

Khurshid, A., Khan, K. & Cifuentes-Faura, J., 2023. 2030 Agenda of sustainable transport: Can current progress lead towards carbon neutrality? Transportation Research Part D: Transport and Environment, 122, p.103869. Available at: https://doi.org/10.1016/j.trd.2023.103869

Kirjavainen, J. & Suopajärvi, L., 2025. Barriers and risks of socio-technical transition towards sustainable road transport in sparsely populated areas: case of Finnish Lapland. European Transport Research Review, 17(1), p.21.https://doi.org/10.1186/s12544-025-00721-0

Mantri, H. (2025). A data-driven approach to predict the load profile at an electric vehicle charging station. Master’s thesis, University of Bremen.

Möring-Martínez, Gabriel; Senzeybek, Murat; Jochem, Patrick (2024): Clustering the European Union electric vehicle markets: A scenario analysis until 2035. In Transportation Research Part D: Transport and Environment 135, p. 104372. https://doi.org/10.1016/j.trd.2024.104372

Möring-Martínez, Gabriel; Murat Senzeybek; Samuel Hasselwander; Stephan Schmid, (2025), Quantifying the impact of fleet turnover on electric vehicle uptake in Europe, Transportation Research Part D: Transport and Environment, 147, 104945. https://doi.org/10.1016/j.trd.2025.104945.

Mutayab Khalid, Jagruti Thakur, Sivapriya Mothilal Bhagavathy, Monika Topel, (2024), “Impact of public and residential smart EV charging on distribution power grid equipped with storage”, Sustainable Cities and Society, 104, 105272. https://doi.org/10.1016/j.scs.2024.105272.

OSM (OpenStreetMap) (2025) © OpenStreetMap Contributors. Available online: https://www.openstreetmap.org.

Rana, M. Masud et al., (2025) "Comprehensive Review on the Charging Technologies of Electric Vehicles (EV) and Their Impact on Power Grid," IEEE Access, 13, 35124-35156. https://doi.org/10.1109/ACCESS.2025.3538663

Ravanbach, B. et al., "A Dynamic Prediction Tool for Vehicle-to-Grid Operation and Planning," 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON), Porto, Portugal, 2024, pp. 610-615. https://doi.org/10.1109/MELECON56669.2024.10608538

Smith, M. J., Wedge, R. and Veeramachaneni K., FeatureHub: Towards collaborative data science," in 2017 IEEE International ce on Data Science and Advanced Analytics (DSAA), 2017

Sayed, Mohammad Ali, Ribal Atallah, Chadi Assi, Mourad Debbabi, (2022), “Electric vehicle attack impact on power grid operation”, International Journal of Electrical Power & Energy Systems, 137, 107784. https://doi.org/10.1016/j.ijepes.2021.107784.

TU Delft (2025), EPIOT: Quantifying EV Flexibility. https://drive2x-epiot.ewi.tudelft.nl/

Yaghoubi, Ela., Yaghoubi, Eln, Khamees, A, Razmi, D., Lu T., (2024), “A systematic review and meta-analysis of machinde learning, deep learning, and ensemble learning approaches in predicting EV charging behavior”, Engineering Applications of Artificial Intelligence, 135, 108789. https://doi.org/10.1016/j.engappai.2024.108789.

Yang, Li, Jiashen Teh, Ching-Ming Lai, (2025), “Assessing power grid vulnerability to extreme weather: The impact of electric vehicles and energy storage systems”, Journal of Energy Storage, 112, 115534. https://doi.org/10.1016/j.est.2025.115534.

Published

2025-12-01

How to Cite

Ravanbach, B., & Anderson, J. E. (2025). Modeling and analytics tools for electric mobility: Use-cases at the urban level. Street Art & Urban Creativity, 11(7), 305–327. https://doi.org/10.62161/sauc.v11.6017