Visual Culture in the Age of Artificial Intelligence: A Bibliometric Study
Mappin Collaborations and Emerging Topins
DOI:
https://doi.org/10.62161/sauc.v11.5870Keywords:
Visual Culture, Digital Art, Digital Humanities, Visual Communication, Bibliometric Analysis, Artificial Intelligence, Generative AIAbstract
Contemporary visual culture is undergoing a profound transformation driven by artificial intelligence. This bibliometric study examines the scientific development of the field between 2014 and 2024, based on 93 articles indexed in Scopus. MASHA, VOSviewer, and Biblioshiny were employed to analyse co-authorship networks, thematic trends, publication sources, and geopolitical dynamics. The results reveal exponential growth since 2021, with a particular emphasis on computer vision, generative aesthetics, and cultural criticism. European contributions addressing perceptual biases and algorithmic authorship are especially prominent. The findings also indicate a concentration of knowledge in the Global North and limited representation from the Global South. The study provides a critical mapping of the field and proposes a transdisciplinary research agenda for scholars in the arts, digital humanities, communication, and data science. It further recommends future research adopting mixed-method approaches to examine the ethical, cultural, and symbolic implications of visual AI.
Downloads
Global Statistics ℹ️
|
57
Views
|
14
Downloads
|
|
71
Total
|
|
References
Ajuriaguerra Escudero, M. A., & Di Guglielmo, O. (2025). The Role of Creative Industries in Urban Regeneration: A Comparative Study of London and Bogotá. Street Art & Urban Creativity, 11(1), 111–136. https://doi.org/10.25765/sauc.v11.5687 DOI: https://doi.org/10.25765/sauc.v11.5687
Alvarado-Vargas, A., Leon-Chuyes, K., Aguilar-Chuquizuta, D., & Benavides-Medina, A. (2025). Ciencias sociales y computación en el Perú: una radiografía de la producción científica universitaria. International Journal of Computational Innovations Intelligent Systems and AI, 1(1), 28-44. https://doi.org/10.64439/cisai.v1i1.8 DOI: https://doi.org/10.64439/cisai.v1i1.8
Cáceres, O. P., Sánchez-Rogel, E., Barros-Naranjo, J., Silva-Marchan, H., Espinoza-Mina, R., & Correa-Calle, T. (2025). Patrones Lingüísticos y Visuales de ChatGPT en la Educación Superior. VISUAL REVIEW International Visual Culture Review / Revista Internacional de Cultura Visual, 17(3), 265-278. https://doi.org/10.62161/revvisual.v17.5403 DOI: https://doi.org/10.62161/revvisual.v17.5403
Di Dio, C., Ardizzi, M., Schieppati, S. V., Massaro, D., Gilli, G., Gallese, V., & Marchetti, A. (2023). Art made by artificial intelligence: The effect of authorship on aesthetic judgments. Psychology of Aesthetics, Creativity, and the Arts, 19(5), 1164-1176. https://doi.org/10.1037/aca0000602 DOI: https://doi.org/10.1037/aca0000602
Ebbrecht-Hartmann, T., Stiassny, N., & Henig, L. (2023). Digital visual history: Historiographic curation using digital technologies. Rethinking History, 27(2), 159-186. https://doi.org/10.1080/13642529.2023.2181534 DOI: https://doi.org/10.1080/13642529.2023.2181534
Gjorgjieski, V. (2024). Art Redefined: AI’s Influence on Traditional Artistic Expression. International Journal of Art and Design, 1(1), 49-60. https://doi.org//10.69648/SWWW7235 DOI: https://doi.org/10.69648/SWWW7235
Gomes-Caldeira, W., & Simões, J. M. (2024). Digital Image: The Role of Apparatus, Artificial Intelligence, and Machine Learning in Visual Communication in the Digital Age. Rotura- Revista De comunicaçao, Cultura E Artes, 4(2), 138-149. https://doi.org/10.34623/AYYM-9C08
Gülaçti, İ. E., & Kahraman, M. E. (2021). The Impact of Artificial Intelligence on Photography and Painting in the Post-Truth Era and the Issues of Creativity and Authorship. Medeniyet Sanat Dergisi, 7(2), 243-270. https://doi.org/10.46641/medeniyetsanat.994950 DOI: https://doi.org/10.46641/medeniyetsanat.994950
Hung, S.-W., Chang, C.-W., & Ma, Y.-C. (2021). A new reality: Exploring continuance intention to use mobile augmented reality for entertainment purposes. Technology in Society, 67, 101757. https://doi.org/10.1016/j.techsoc.2021.101757 DOI: https://doi.org/10.1016/j.techsoc.2021.101757
Impett, L., & Offert, F. (2022). There Is a Digital Art History. Visual Resources, 38(2), 186-209. https://doi.org/10.1080/01973762.2024.2362466 DOI: https://doi.org/10.1080/01973762.2024.2362466
Laba, N. (2024a). Beyond magic: Prompting for style as affordance actualization in visual generative media. New Media & Society, 14614448241286144. https://doi.org/10.1177/14614448241286144 DOI: https://doi.org/10.1177/14614448241286144
Laba, N. (2024b). Engine for the imagination? Visual generative media and the issue of representation. Media, Culture & Society, 46(8), 1599-1620. https://doi.org/10.1177/01634437241259950 DOI: https://doi.org/10.1177/01634437241259950
Langguth, J., Pogorelov, K., Brenner, S., Filkuková, P., & Schroeder, D. T. (2021). Don’t Trust Your Eyes: Image Manipulation in the Age of DeepFakes. Frontiers in Communication, 6, 632317. https://doi.org/10.3389/fcomm.2021.632317 DOI: https://doi.org/10.3389/fcomm.2021.632317
Liu, X., & Liu, Y. (2024). AI Tools to Enhance Cultural Identity in Traditional Visual Communication: A Case Study of Milan Chinatown. In Lecture notes in computer science (pp. 293-308). https://doi.org/10.1007/978-3-031-61147-6_20 DOI: https://doi.org/10.1007/978-3-031-61147-6_20
Loup-Escande, E., Frenoy, R., Poplimont, G., Thouvenin, I., Gapenne, O., & Megalakaki, O. (2017). Contributions of mixed reality in a calligraphy learning task: Effects of supplementary visual feedback and expertise on cognitive load, user experience and gestural performance. Computers in Human Behavior, 75, 42-49. https://doi.org/10.1016/j.chb.2017.05.006 DOI: https://doi.org/10.1016/j.chb.2017.05.006
MacKenzie, A., & Munster, A. (2019). Platform Seeing: Image Ensembles and Their Invisualities. Theory, Culture & Society, 36(5), 3-22. https://doi.org/10.1177/0263276419847508 DOI: https://doi.org/10.1177/0263276419847508
McCormack, J., Gifford, T., & Hutchings, P. (2019). Autonomy, Authenticity, Authorship and Intention in Computer Generated Art. En Lecture notes in computer science (pp. 35-50). https://doi.org/10.1007/978-3-030-16667-0_3 DOI: https://doi.org/10.1007/978-3-030-16667-0_3
Messer, U. (2024). Co-creating art with generative artificial intelligence: Implications for artworks and artists. Computers in Human Behavior: Artificial Humans, 2(1), 100056. https://doi.org/10.1016/j.chbah.2024.100056 DOI: https://doi.org/10.1016/j.chbah.2024.100056
Mousa-Monser, E. F. (2023). A modern vision in the applications of artificial intelligence in the field of visual arts. International Journal of Multidisciplinary Studies in Art and Technology, 6(1), 73-104. https://doi.org/10.21608/ijmsat.2024.274900.1021 DOI: https://doi.org/10.21608/ijmsat.2024.274900.1021
Offert, F., & Bell, P. (2021). Perceptual bias and technical metapictures: Critical machine vision as a humanities challenge. AI & SOCIETY, 36(4), 1133-1144. https://doi.org/10.1007/s00146-020-01058-z DOI: https://doi.org/10.1007/s00146-020-01058-z
Payntar, N. D., Hsiao, W.-L., Covey, R. A., & Grauman, K. (2021). Learning patterns of tourist movement and photography from geotagged photos at archaeological heritage sites in Cuzco, Peru. Tourism Management, 82, 104165. https://doi.org/10.1016/j.tourman.2020.104165 DOI: https://doi.org/10.1016/j.tourman.2020.104165
Peña-Cáceres, O. (2025). MASHA: An Online Platform for Metrics, Analysis, Science, Hub and Analytics. CISAI- International Journal of Computational Innovations, Intelligent Systems and AI, (0.1). https://doi.org/10.5281/zenodo.14933501 DOI: https://doi.org/10.64439/cisai.v1i1.11
Romele, A. (2022). Images of Artificial Intelligence: A Blind Spot in AI Ethics. Philosophy & Technology, 35(1), 4. https://doi.org/10.1007/s13347-022-00498-3 DOI: https://doi.org/10.1007/s13347-022-00498-3
Sharrab, Y., Almutiri, N. T., Tarawneh, M., Alzyoud, F., Al-Ghuwairi, A.-R. F., & Al-Fraihat, D. (2023). Toward Smart and Immersive Classroom based on AI, VR, and 6G. International Journal of Emerging Technologies in Learning (iJET), 18(02), 4-16. https://doi.org/10.3991/ijet.v18i02.35997 DOI: https://doi.org/10.3991/ijet.v18i02.35997
Simões, J. M. (2024). Disrupting the Conventional: The Impact of Generative AI Models on Creativity in Visual Communications. E-Revista de Estudos Interculturais, (12). https://doi.org/10.34630/e-rei.vi12.5806
Somaini, A. (2023). Algorithmic Images: Artificial Intelligence and Visual Culture. Grey Room, 93, 74-115. https://doi.org/10.1162/grey_a_00383 DOI: https://doi.org/10.1162/grey_a_00383
Sommer, V. (2020). Multimodal Analysis in Qualitative Research: Extending Grounded Theory Through the Lens of Social Semiotics. Qualitative Inquiry, 27(8-9), 1102-1113. https://doi.org/10.1177/1077800420978746 DOI: https://doi.org/10.1177/1077800420978746
Vaccari, C., & Chadwick, A. (2020). Deepfakes and Disinformation: Exploring the Impact of Synthetic Political Video on Deception, Uncertainty, and Trust in News. Social Media + Society, 6(1), 2056305120903408. https://doi.org/10.1177/2056305120903408 DOI: https://doi.org/10.1177/2056305120903408
Vaezipour, A., Rakotonirainy, A., Haworth, N., & Delhomme, P. (2018). A simulator evaluation of in-vehicle human machine interfaces for eco-safe driving. Transportation Research Part A: Policy and Practice, 118, 696-713. https://doi.org/10.1016/j.tra.2018.10.022 DOI: https://doi.org/10.1016/j.tra.2018.10.022
Wasielewski, A. (2023). Authenticity and the Poor Image in the Age of Deep Learning. Photographies, 16(2), 191-210. https://doi.org/10.1080/17540763.2023.2189158 DOI: https://doi.org/10.1080/17540763.2023.2189158
Wasielewski, A. (2024). Unnatural Images: On AI-Generated Photographs. Critical Inquiry, 51(1), 1-29. https://doi.org/10.1086/731729 DOI: https://doi.org/10.1086/731729
Watiktinnakorn, C., Seesai, J., & Kerdvibulvech, C. (2023). Blurring the lines: How AI is redefining artistic ownership and copyright. Discover Artificial Intelligence, 3(1), 37. https://doi.org/10.1007/s44163-023-00088-y DOI: https://doi.org/10.1007/s44163-023-00088-y
Zhang, F., Salazar-Miranda, A., Duarte, F., Vale, L., Hack, G., Chen, M., Liu, Y., Batty, M., & Ratti, C. (2024). Urban Visual Intelligence: Studying Cities with Artificial Intelligence and Street-Level Imagery. Annals Of The American Association Of Geographers, 114(5), 876-897. https://doi.org/10.1080/24694452.2024.2313515 DOI: https://doi.org/10.1080/24694452.2024.2313515
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Authors retain copyright and transfer to the journal the right of first publication and publishing rights

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who publish in this journal accept the following terms:
-
Authors retain copyright.
-
Authors transfer to the journal the right of first publication. The journal also owns the publishing rights.
-
All published contents are governed by an Attribution-NoDerivatives 4.0 International License.
Access the informative version and legal text of the license. By virtue of this, third parties are allowed to use what is published as long as they mention the authorship of the work and the first publication in this journal. If you transform the material, you may not distribute the modified work. -
Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (e.g., inclusion in an institutional repository or publication in a book) as long as they clearly indicate that the work was first published in this journal.
- Authors are allowed and recommended to publish their work on the Internet (for example on institutional and personal websites), following the publication of, and referencing the journal, as this could lead to constructive exchanges and a more extensive and quick circulation of published works (see The Effect of Open Access).







