Implementación de herramientas de Inteligencia Artificial en la detección de vídeos falsos y ultrafalsos (deepfakes)

Caso de Radio Televisión Española (RTVE)

Autores/as

DOI:

https://doi.org/10.62161/revvisual.v16.5303

Palabras clave:

Falso, Deepfakes Vídeos, Inteligencia artificial, Radio Televisión Española

Resumen

La preocupación por la difusión de información falsa ha llevado a medios   a emplear la inteligencia artificial (IA) para detectar deepfakes. Esta investigación es descriptiva-exploratoria. Mediante una revisión bibliográfica y entrevistas, revela el impacto transformador de la IA destacando su empleo para verificar la autenticidad de los contenidos. En este ámbito RTVE combina metodologías tradicionales con otras basadas en IA, y lidera el desarrollo de varias herramientas en colaboración con diferentes universidades. Estas herramientas han dado ya resultados satisfactorios en la detección de estos materiales, fortaleciendo  la veracidad de la información y aumentando la confianza ciudadana en sus contenidos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aramburú, L. G., López, I. y López, A. (2023) «Inteligencia artificial en RTVE al servicio de la España vacía. Proyecto de cobertura informativa con redacción automatizada para las elecciones municipales de 2023», Revista Latina de Comunicación Social, (81), pp. 1–16. doi: 10.4185/RLCS-2023-1550. DOI: https://doi.org/10.4185/RLCS-2023-1550

Bañuelos, J. (2022). Evolución del Deepfake: campos semánticos y géneros discursivos (2017-2021). Revista ICONO 14. Revista Científica De Comunicación Y Tecnologías Emergentes, 20(1). https:// doi.org/10.7195 /ri14.v20i1.1773 DOI: https://doi.org/10.7195/ri14.v20i1.1773

Branislav, S., Aleksandra, P. (2022). Use of artificial intelligence for the generation of media content. Available from: 10.58898/sij.v1i1.01-07

Bouter, M. D. L. D., Pardo, J. L., Geradts, Z., & Worring, M. (2023). ProtoExplorer: Interpretable Forensic Analysis of Deepfake Videos using Prototype Exploration and Refinement. arXiv preprint arXiv:2309.11155. DOI: https://doi.org/10.1177/14738716241238476

Cao, J., Qi, P., Sheng, Q., Yang, T., Guo, J., y Li, J. (2020). Exploring the Role of Visual Content in Fake News Detection. In K. Shu, S. Wang, D. Lee y H. Liu (ed.). Disinformation, Misinformation, and Fake News in Social Media: Emerging Research Challenges and Opportunities (pp. 141-161). Springer International Publishihaidng. DOI: https://doi.org/10.1007/978-3-030-42699-6_8

Cerdán, V. y Padilla, G. (2019). Historia del fake audiovisual: deepfake y la mujer en un imaginario falsificado y perverso. Historia y comunicación social, 24(2). https://dx.doi.org/10.5209/hics.66293 DOI: https://doi.org/10.5209/hics.66293

Colin, P. (2023). Promoting responsible AI: A European perspective on the governance of artificial intelligence in media and journalism. Communications. 10.1515/commun-2022-0091

Eva, K. á(2022). Usage of artificial intelligence on social media in europe. Ad alta, Available from: 10.33543/1202330333

Fernández, A. (2017). Relatos híbridos: El papel de la narratividad en la visualización de información interactiva [Tesis doctoral, Universidad Europea]. Repositorio Abacus https://193.147.239.238/handle/11268/6981

Fernández, A., Revilla, A. y Andaluz, L. (2020). Análisis de la caracterización discursiva de los relatos migratorios en Twitter. El caso Aquarius. Revista Latina de Comunicación Social, (77), 1-18. https://doi.org/10.4185/RLCS-2020-1446 DOI: https://doi.org/10.4185/RLCS-2020-1446

Guarnera, L., & Battiato, S. (2023). An Overview of Deepfake Technologies: from Creation to Detection in Forensics.

Haidar, H. (2023). Using artificial intelligence to verify media content on the Internet" A survey study of journalists working in Iraqi media institutions. International Journal of Media Studies and Communication Sciences. 10.36772/arid.aijmscs.2023.485

Hameleers, M., Powell, T. E., Van der Meer, T. y Bos, L. (2020). A picture paints a thousand lies? The effects and mechanisms of multimodal disinformation and rebuttals disseminated via social media. Political Communication, 37 (2), 281-301. DOI: https://doi.org/10.1080/10584609.2019.1674979

Haseena, S., Saroja, S., Nivetha, A. (2023). TVN: Detect Deepfakes Images using Texture Variation Network. Inteligencia artificial, doi: 10.4114/intartif.vol26iss72pp1-14 DOI: https://doi.org/10.4114/intartif.vol26iss72pp1-14

Jankowicz, N., Hunchak, J., Pavliuc, A., Davies, C., Pierson, S., y Kaufmann, Z. (2021) Malign Creativity: How Gender, Sex and Lies Are Weaponized Against Women Online, Washington, D.C.: Wilson Center. https://www.wilsoncenter.org/publication/malign-creativity-how-gender-sex-and-lies-are-weaponized-against-women-online

Jerónimo, P., & Esparza, M. S. (2022). Disinformation at a Local Level: An Emerging Discussion. Publications, 10(2), 15. MDPI AG. Retrieved from http://dx.doi.org/10.3390/publications10020015 DOI: https://doi.org/10.3390/publications10020015

Jing, H.(2023). The Rising Trend of Artificial Intelligence in Social Media. Advances in computer and electrical engineering book series, Available from: 10.4018/978-1-6684-6937-8.ch003

Kalin, S., Bhawna, P., Dhall, A.. (2022). Visual Representations of Physiological Signals for Fake Video Detection. arXiv.org. 10.48550/arXiv.2207.08380

Karnouskos, S. (2020). Artificial intelligence in digital media: The era of deepfakes in IEEE Transactions on Technology and Society, 1(3), 138-147. doi: 10.1109/TTS.2020.3001312 DOI: https://doi.org/10.1109/TTS.2020.3001312

Kavanagh, J. y Rich, M. D. (2018). Truth decay: An initial exploration of the diminishing role of facts and analysis in American public life, Rand Corporation. DOI: https://doi.org/10.7249/RR2314

Koldobika, Meso-Ayerdi., Larrondo-Ureta, A.., Díaz-Noci, J. (2023). Without journalists, there is no journalism: the social dimension of generative artificial intelligence in the media. Profesional De La Informacion, Available from: 10.3145/epi.2023.mar.27

Liz-López, H. ; Keita M. , Taleb-Ahmed, A. Abdenour H. , Huertas-Tato, J. , Camacho D. , “Generación y detección de contenidos audiovisuales multimodales manipulados: Avances, tendencias y desafíos abiertos”, Fusión de Información, pp.102103, 2023. DOI:10.1109/wacvw58289.2023.00071 DOI: https://doi.org/10.1016/j.inffus.2023.102103

Martin-Rodriguez, F., Garcia-Mojon, R. & Fernandez-Barciela, M. (2023). Detection of AI-Created Images Using Pixel-Wise Feature Extraction and Convolutional Neural Networks. Sensors. [Online]. 23 (22). p.p. 9037. Available from: http://dx.doi.org/10.3390/s23229037. Mathias, F. , de-Lima-Santos., W. , Ceron, A.. (2021). Artificial Intelligence in News Media: Current Perceptions and Future Outlook. Available from: 10.20944/PREPRINTS202110.0020.V1 DOI: https://doi.org/10.3390/s23229037

Matthew, N., O., Sadiku., Tolulope, J., Ashaolu., Abayomi, Ajayi-Majebi., Sarhan, M., Musa. (2021). Artificial Intelligence in Social Media. Available from: 10.51542/IJSCIA.V2I1.4

Nandini, S., Akshay, B, G., Brunda, A, N., Chandana, A, M., Divyashree, S, R. (2022). Advanced Reverse Image Search and Profile Creation using Machine Learning. International Journal of Advanced Research in Science, Communication and Technology. 10.48175/ijarsct-5417

Olmo, J. y Romero, A. (2019). Desinformación: Concepto y perspectivas. Análisis del Real Instituto Elcano (ARI), (41). https://www.realinstitutoelcano.org/analisis/desinformacion-concepto-y-perspectivas/

Palella, S y Martins, F. (2017). Metodología de la investigación cuantitativa. FEDEUPEL

Pineda, A. (2004). Más allá de la historia: aproximación a los elementos teóricos de la propaganda de guerra. En A. Pena (Ed.), Comunicación y guerra en la historia (pp. 807-823). Santiago de Compostela: Tórculo http://hdl.handle.net/11441/64448

Rashmi, C., Bhargavi, V., Samhitha, S., Anjana, Y., & Saivaishnavi, V. (2023). Fake detect: a deep learning ensemble model for fake news detection (ml). Turkish Journal of Computer and Mathematics Education (TURCOMAT), 14(03), 684-688.

Shilpa, B., Anush, Kamath., Hemanth, Bhat., Sathwik, A, M. (2023). Unmasking Deepfakes: Using Resnext and LSTM to Detect Deepfake Videos. International Journal of Advanced Research in Science, Communication and Technology, doi: 10.48175/ijarsct-8639 DOI: https://doi.org/10.48175/IJARSCT-8639

Sohrawardi, S., Chintha, A., Thai, B., Seng, S., Hickerson, A., Ptucha, R. y Wright, M. (2019). Póster: Hacia una detección sólida de deepfakes en mundo abierto. Actas de la Conferencia ACM SIGSAC de 2019 sobre seguridad informática y de las comunicaciones. https://doi.org/10.1145/3319535.3363269 DOI: https://doi.org/10.1145/3319535.3363269

Taylor, M. (2023). Deepfakes, Fake Barns, and Knowledge from Videos. Synthese, Available from: 10.1007/s11229-022-04033-x

Timothy, K., Shih. A. (2011). Video Forgery. Available from: 10.1109/NBIS.2011.120 [3]

Vedamurthy, H., (2022). A reliable solution to detect deepfakes using Deep Learning. doi: 10.1109/CCIP57447.2022.10058638 DOI: https://doi.org/10.1109/CCIP57447.2022.10058638

Publicado

2024-07-09

Cómo citar

Sánchez Esparza, M., Palella Stracuzzi, S., & Fernández Fernández, Ángel. (2024). Implementación de herramientas de Inteligencia Artificial en la detección de vídeos falsos y ultrafalsos (deepfakes): Caso de Radio Televisión Española (RTVE). VISUAL REVIEW. International Visual Culture Review Revista Internacional De Cultura Visual, 16(4), 213–225. https://doi.org/10.62161/revvisual.v16.5303

Número

Sección

Artículos de investigación