Lógica Formal, Representación e Intuición

Los límites de la representación e intuición clásicas de objetos matemáticos

Autores/as

  • José Alejandro Fernández Cuesta Universidad Complutense de Madrid

DOI:

https://doi.org/10.37467/revvisual.v9.5020

Palabras clave:

Intuición, Representación, Imágenes, Lógica formal, Matemáticas, Objetos abstractos

Resumen

El estudio filosófico de la representación de objetos matemáticos exige definir, previamente, qué entendemos por intuición. En el presente artículo introduzco un argumento que muestra por qué no podemos representar todo objeto manipulable conceptualmente hablando. Para alcanzar esta conclusión admitiré que existen ciertos objetos abstractos no aprehensibles de manera intuitiva. Y, para ello, repasaré históricamente su caracterización y definición formal. Finalmente, asentaré una base actualizada sobre la que iniciar un estudio específico acerca del papel de la representación de objetos en ciencias formales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ayer, A. J. (1959). Logical Positivism. Free Press: Nueva York.

Badiou, A. (1988). L’être et l’événement. Seuil: París.

Balaguer, M. (1998). Platonism and Anti-Platonism in Mathematics. Oxford: Oxford University Press.

Beauchot, M. (1980). El problema de los universales. UNAM: México.

Bell, J. L. (2022). Higher-Order Logic and Type Theory. Cambridge Elements. Philosophy and Logic. Cambridge University Press: Londres. DOI: https://doi.org/10.1017/9781108981804

Benacerraf (1973). Mathematical Truth, en Benacerraf & Putnam 1983, 403-420. DOI: https://doi.org/10.1017/CBO9781139171519.022

Benítez López, A. (2020). La Silogística de Aristóteles. Guillermo Escolar Editor: Madrid.

Bernays (1935). On Platonism in Mathematics, in Benacerraf & Putnam 1983, pp. 258-271. DOI: https://doi.org/10.1017/CBO9781139171519.014

Beth, E. W. y Piaget, J. (1974). Mathematical Epistemology and Psychology. Synthese: Nueva York. https://doi.org/10.1007/978-94-017-2193-6. DOI: https://doi.org/10.1007/978-94-017-2193-6

De Bustos Guadaño, E. (1999). Filosofía del Lenguaje. UNED: Madrid.

Dummett, M. (2000). Elements of Intuitionism. Oxford University Press: Oxford.

Falguera, J. L. y Martínez-Vidal, C. (2012). Abstract Objects. The Stanford Encyclopedia of Philosophy, Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/sum2022/entries/abstract-objects/>.

Fernández Cuesta (2022). La lógica modal como herramienta metodológica en epistemología. HUMAN REVIEW. International Humanities Review, 11(1), 71-79.

https://doi.org/10.37467/gkarevhuman.v11.3016. DOI: https://doi.org/10.37467/gkarevhuman.v11.3016

Fernández Mateo, J. (2022). Realidad artificial. Un análisis de las potenciales amenazas de la inteligencia Artificial. VISUAL REVIEW. International Visual Culture Review / Revista Internacional De Cultura Visual, 9(2), 235-247. DOI: https://doi.org/10.37467/revvisual.v9.5004. DOI: https://doi.org/10.37467/revvisual.v9.5004

Field (1980). Science without Numbers: a defense of nominalism. Blackwell: Oxford.

Frápolli Sanz, M. J. (2014). Cuerpos y números ¿Qué significa existir? En Villar Ezcurra, A. y Sánchez Orantos, A. (eds.), Una ciencia humana: libro homenaje a Camino Cañón Loyes (pp. 59-72). Universidad Pontificia de Comillas.

Frege, G. (1892). Über Sinn und Bedeutung. Zeitschrift für Philosophie und philosophische Kritik, vol. 100, 25-50.

French, A. P. (1968). Special Relativity. MIT Introductory Physics: Massachusetts.

García-Baró, M. (2008). Teoría Fenomenológica de la Verdad. Comentario continuo a la primera edición de Investigaciones lógicas de Edmund Husserl. Comillas: Madrid.

Gherab Martín, K. (2022). Mentes contra Máquinas: revisión histórica y lógico-filosófica del argumento gödeliano de Lucas-Penrose. Human Review. International Humanities Review, 11, 185-195. DOI: https://doi.org/10.37467/revhuman.v11.4503. DOI: https://doi.org/10.37467/revhuman.v11.4503

Gilbert, M. A. (2011). The Kisceral: Reason and Intuition in Argumentation. Argumentation, 25: 163-170. https://doi.org/10.1007/s10503-011-9210-2. DOI: https://doi.org/10.1007/s10503-011-9210-2

Goodman y Quine (1947). Steps Towards a Constructive Nominalis, Journal of Symbolic Logic, 12: 97-122. DOI: https://doi.org/10.2307/2266485

Heyting, A. (1930) Die formalen Regeln der intuitionistischen Logik. (German) 3 partes, en: Sitzungsberichte der preußischen Akademie der Wissenschaften. phys.-math. Klasse, 42-56, 57-71, 158-169.

Heyting, A. (1934) Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie. Springer, Berlin. DOI: https://doi.org/10.1007/978-3-642-65617-0_9

Heyting, A. (1941) Untersuchungen der intuitionistische Algebra. (German) Verh. Nederl. Akad. Wetensch. Afd. Natuurk. Sect. 1. 18. no. 2, 36 pp.

Heyting, A. (1956) Intuitionism. An introduction. North-Holland Publishing Co.: Amsterdam.

Heyting, A. (1959) Axioms for intuitionistic plane affine geometry. The axiomatic method. With special reference to geometry and physics. Proceedings of an International Symposium held at the Univ. of Calif., Berkeley, Dec. 26, 1957Jan 4, 1958 (edited by L. Henkin, P. Suppes and A. Tarski) pp. 160-173 Studies in Logic and the Foundations of Mathematics North-Holland Publishing Co.: Amsterdam. DOI: https://doi.org/10.1016/S0049-237X(09)70026-6

Leng (2010). Mathematics and Reality. Oxford University Press: Oxford. DOI: https://doi.org/10.1093/acprof:oso/9780199280797.001.0001

Linsky y Zalta (1995). Naturalized Platonism vs. Platonized Naturalism, Journal of Philosophy, 92, 525-555. DOI: https://doi.org/10.2307/2940786

Maddy (1990). Realism in Mathematics. Clarendon Press: Oxford.

Malík, J. (2022). Wrestling with the Posthuman: Understanding the Relationship between Human Autonomy and Technology. TECHNO REVIEW. International Technology, Science and Society Review /Revista Internacional De Tecnología, Ciencia Y Sociedad, 11(2), 141-158. DOI: https://doi.org/10.37467/gkarevtechno.v11.3252. DOI: https://doi.org/10.37467/gkarevtechno.v11.3252

Martin, A. (2007). The Representation of Object Concepts in the Brain. Annual Review of Psychology, 58, 25-45. https://doi.org/10.1146/annurev.psych.57.102904.190143. DOI: https://doi.org/10.1146/annurev.psych.57.102904.190143

Meillassoux, Q. (2006). Après la finitude. Essai sur la nécessité de la contingence. Éditions du Seuil: París.

Nado, J. (2015). The intuition deniers. Philosophical Studies, 173, 781-800. https://doi.org/10.1007/s11098-015-0519-9. DOI: https://doi.org/10.1007/s11098-015-0519-9

Ordóñez Pinilla, C. A. (2006). Monismo anómalo, intencionalidad, falacias mentales e inteligencia artificial. Bajo Palabra, (1), 38-54. DOI: https://doi.org/10.15366/bp2006.1.004. DOI: https://doi.org/10.15366/bp2006.1.004

Ortega y Gasset, J. (1915). Conciencia, objeto y las tres distancias de éste (fragmentos de una lección) en Obras Completas Vol 2. Revista de Occidente: Madrid.

Parsons (1980). Mathematical Intuition. Proceedings of the Aristotelian Society, 80: 145-168. DOI: https://doi.org/10.1093/aristotelian/80.1.145

Pérez, C. F. (1999). Historia de las ideas estéticas y de las teorías artísticas Contemporáneas. Volumen II. Ed. Valeriano Bozal. La Balsa de Medusa, 81.

Ramsey, F. (1931). The Foundations of Mathematics. Routledge: Londres.

Resnik (1997). Mathematics as a Science of Patterns. Clarendon Press: Oxford.

Rivadulla, A. (2004). Éxito, razón y cambio en física: un enfoque instrumental en teoría de la ciencia. Trotta: Madrid.

Rey Pastor, J. y Babini, J. (2000). Historia de la matemática. Vols. I y II. Editorial Gedisa: Barcelona.

Shapiro (1997). Philosophy of Mathematics: Structure and Ontology. Oxford University Press: Oxford.

Tait (2005). The Provenance of Pure Reason: Essays in the Philosophy of Mathematics and its History. Oxford University Press: Oxford.

Russell, B. (1918). The Philosophy of Logical Atomism. En Robert Charles Marsh (ed.), “Bertrand Russell. Logic and Knowledge”. Unwin Hyman: Londres.

Suárez, M. (2019). Filosofía de la Ciencia: historia y práctica. Técnos: Madrid.

Wittgenstein, L. (1922). Tractatus Logico-Philosophicus. Harcourt, Brace & Co.: Nueva York.

Yablo (2014). Aboutness. Princeton University Press: Princeton. DOI: https://doi.org/10.23943/princeton/9780691144955.001.0001

Descargas

Publicado

2023-07-14

Cómo citar

Fernández Cuesta, J. A. (2023). Lógica Formal, Representación e Intuición: Los límites de la representación e intuición clásicas de objetos matemáticos. VISUAL REVIEW. International Visual Culture Review Revista Internacional De Cultura Visual, 9(2), 349–369. https://doi.org/10.37467/revvisual.v9.5020

Número

Sección

Artículos de investigación