Programmatic Advertising and the changes in the digital industry
DOI:
https://doi.org/10.37467/revvisual.v9.4114Keywords:
Programmatic advertising, Cookie, Third-party cookies, GDPR, User privacy, Qualitative analysis, TechnologiesAbstract
Programmatic advertising and its technologies, traditional media buying has been replaced by audience segment buying. The criterion is no longer the context but the interests of the users to whom we want to show certain ads, which we know thanks to their browsing profile among other sources. A qualitative research methodology has been used. Along with the above, we have studied cookies, their relevance in the programmatic advertising ecosystem and what the disappearance of third party cookies in Google Chrome would mean.
Downloads
References
Alizai, Z. A., Tahir, H., Murtaza, M. H., Tahir, S., & Mcdonald-Maier, K. (2019). Key-based cookie-less session management framework for application layer security. IEEE Access, 128544-128554. https://doi.org/10.1109/ACCESS.2019.2940331 Arkhipov, D. I. (2016). Computational Models for Scheduling in Online Advertising (Doctoral dissertation, UC Irvine). Association, A. M. (2022). Digital Marketing. www.ama.org/topics/digital-marketing/ Berganza Conde, M., & Ruiz San Román, J. A. (2010). Investigar en comunicación: Guía práctica de métodos y técnicas de investigación social en comunicación. McGraw-Hill. Beyer, F. (2013). Cookieless Monster: Exploring the Ecosystem of Web-based Device Fingerprinting. Georg-Augut-Universitat Gottingen, 1-17. Cámara Lapuente, S. (2020). Resolución contractual y destino de los datos y contenidos generados por los usuarios de servicios digitales. Cuadernos de Derecho Transnacional, 12(1), 838-862. https://doi.org/10.20318/cdt.2020.5226 Campos-Domínguez, Eva (2017). “Twitter y la comunicación política”. El profesional de la información, 26(5), 785-793 Cozzolino, A., Corbo, L., & Aversa, P. (2021). Digital platform-based ecosystems: The evolution of collaboration and competition between incumbent producers and entrant platforms. Journal of Business Research, 126, 385-400. Chen, G., Xie, P., Dong, J., & Wang, T. (2019). Understanding programmatic creative: The role of AI. Journal of Advertising, 48(4), 347-355. Deng, S., Tan, C. W., Wang, W., & Pan, Y. (2019). Smart generation system of personalized advertising copy and its application to advertising practice and research. Journal of Advertising, 48(4), 356-365. DOI: https://doi.org/10.1109/ACCESS.2019.2940331
Esposito, D. (2011, junio 24). Cookieless ASP.NET. https://docs.microsoft.com/en-us/previous-versions/dotnet/articles/aa479314(v=msdn.10)?redirectedfrom=MSDN#cookieless_topic6
Harris, R. A. (2019). The Untapped Potential of Programmatic Advertising in Demand Planning and Forecasting. Journal of Business Forecasting, 38(2).
IAB Digital Simplified. (2014). How an Ad is Served with Real Time Bidding (RTB). www.youtube.com/watch?v=-Glgi9RRuJs
IAB Europe. (2021). A guide to the post Third-Party Cookie Era.
Hu, X., & Sastry, N. (2019). Characterising Third Party Cookie Usage in the EU after GDPR. 11th ACM Conference on Web Science, (pp. 1-5). Boston. https://doi.org/10.1145/3292522.3326039 DOI: https://doi.org/10.1145/3292522.3326039
Huh, J., & Malthouse, E. C. (2020). Advancing computational advertising: Conceptualization of the field and future directions. Journal of Advertising, 49(4), 367-376. DOI: https://doi.org/10.1080/00913367.2020.1795759
Igartua, J. J. (2006). Métodos cuantitativos de investigación en comunicación. Bosch.
Instituto Nacional de Estadística. (2021). Ciencia y tecnología, sociedad de la información. www.ine.es/ss/Satellite?L=es_ES&c=INESeccion_C&cid=1259925528559&p=%5C&pagename=ProductosYServicios%2FPYSLayout¶m1=PYSDetalle¶m3=1259924822888#:~:text=En%20el%20a%C3%B1o%202021%20en,hombres%20(91%2C7%25).
Jabbar, A., Akhtar, P., & Dani, S. (2020). Real-time big data processing for instantaneous marketing decisions: A problematization approach. Industrial Marketing Management, 90, 558-569. DOI: https://doi.org/10.1016/j.indmarman.2019.09.001
Kelleher, A., & Nelson, K. (2020). Goodbye third-party cookies. Hello human experience. Deloitte Digital, 1-8.
Kiran, K. U., & Arumugam, T. (2020, December). Role of programmatic advertising on effective digital promotion strategy: A conceptual framework. Journal of Physics: Conference Series, 1716(1), 012032. DOI: https://doi.org/10.1088/1742-6596/1716/1/012032
Lee, H., & Cho, C. H. (2019). Digital advertising: present and future prospects. International Journal of Advertising, 39(3), 332-341. DOI: https://doi.org/10.1080/02650487.2019.1642015
Li, J., Yuan, Y., Zhao, X., & Wang, F. Y. (2017). Research on information structure of programmatic advertising markets. IFAC-PapersOnLine, 50(1), 13587-13592. DOI: https://doi.org/10.1016/j.ifacol.2017.08.2377
Nikiforakis, N. K., Joosen, W., Kruegel, C., Piessens, F., & Vigna, G. (2013). Cookieless monster: Exploring the ecosystem of web-based device fingerprinting. IEEE Symposium on Security and Privacy (pp. 541-555). IEEE. DOI: https://doi.org/10.1109/SP.2013.43
Palos-Sánchez et al. (2018), A study of the effects of programmatic advertising on users' concerns about privacy overtime DOI: https://doi.org/10.1016/j.jbusres.2018.10.059
Paulson, C., Luo, L., & James, G. M. (2018). Efficient large-scale internet media selection optimization for online display advertising. Journal of Marketing Research, 55(4), 489-506. DOI: https://doi.org/10.1509/jmr.15.0307
Pritchard, M. (2021). Commentary:“Half My Digital Advertising Is Wasted…”. Journal of Marketing, 85(1), 26-29. DOI: https://doi.org/10.1177/0022242920971195
Qin, R., Yuan, Y., and Wang, F. Y. (2017). Exploring the optimal granularity for market segmentation in RTB advertising via computational experiment approach. Electronic Commerce Research and Applications, 24, 68-83. DOI: https://doi.org/10.1016/j.elerap.2017.07.001
Recio Gayo, M. (2019). Nivel adecuado para transferencias internacionales de datos. Derecho PUCP. 83, 207-240. https://doi.org/10.18800/derechopucp.201902.007 DOI: https://doi.org/10.18800/derechopucp.201902.007
Samuel, A., White, G. R., Thomas, R., & Jones, P. (2021). Programmatic advertising: An exegesis of consumer concerns. Computers in Human Behavior, 116, 106657. DOI: https://doi.org/10.1016/j.chb.2020.106657
Sabino, C. (1992). El proceso de investigación. Panapo
Sierra Bravo, R. (1998). Técnicas de Investigación Social Teoría y ejercicios. Paraninfo.
Shan, L., Lin, L., Sun, C., & Wang, X. (2016). Predicting ad click-through rates via feature-based fully coupled interaction tensor factorization. Electronic Commerce Research and Applications, 16, 30-42. DOI: https://doi.org/10.1016/j.elerap.2016.01.004
Shehu, E., Abou Nabout, N., & Clement, M. (2021). The risk of programmatic advertising: Effects of website quality on advertising effectiveness. International Journal of Research in Marketing, 38(3), 663-677. DOI: https://doi.org/10.1016/j.ijresmar.2020.10.004
Yun, J. T., Segijn, C. M., Pearson, S., Malthouse, E. C., Konstan, J. A., & Shankar, V. (2020). Challenges and future directions of computational advertising measurement systems. Journal of Advertising, 49(4), 446-458. DOI: https://doi.org/10.1080/00913367.2020.1795757
Downloads
Published
How to Cite
Issue
Section
License
Those authors who publish in this journal accept the following terms:
- Authors will keep the moral right of the work and they will transfer the commercial rights.