Barreras para la implementación efectiva de la IA en la predicción de obras públicas
DOI:
https://doi.org/10.62161/sauc.v11.5978Palabras clave:
Inteligencia artificial (IA), Planificación urbana, Predicción de obras públicas, Calidad de los datos públicos, Intercambio de datos, Ciudades inteligentes centradas en las personasResumen
Los problemas de calidad de los datos públicos suelen obstaculizar las aplicaciones de inteligencia artificial (IA) en la planificación urbana, afectando la aplicabilidad, eficacia y resultados de los modelos. En este artículo se presenta un estudio de caso sobre la predicción de obras públicas afectadas por la infraestructura de red y su impacto a nivel municipal. Este caso ha servido para identificar barreras y limitaciones en la adopción de la IA en este subdominio, permitiendo formular un conjunto de recomendaciones para mejorar la producción y el intercambio de datos públicos, sentando las bases para futuros modelos de IA en la predicción de obras públicas. Al abordar estos desafíos, las ciudades pueden aprovechar al máximo el potencial de la planificación y toma de decisiones urbanas impulsadas por la inteligencia artificial.
Descargas
Estadísticas globales ℹ️
|
40
Visualizaciones
|
14
Descargas
|
|
54
Total
|
|
Citas
Anwar, M. R., & Sakti, L. D. (2024). Integrating Artificial Intelligence and Environmental Science for Sustainable Urban Planning. ResearchGate. https://www.researchgate.net/publication/380557083_Integrating_Artificial_Intelligence_and_Environmental_Science_for_Sustainable_Urban_Planning DOI: https://doi.org/10.34306/itsdi.v5i2.666
Batty, M. (2013). The New Science of Cities. The MIT Press. https://www.jstor.org/stable/j.ctt9qf7m6 DOI: https://doi.org/10.7551/mitpress/9399.001.0001
Bibri, S. E., Huang, J., Jagatheesaperumal, S. K., & Krogstie, J. (2024). The synergistic interplay of artificial intelligence and digital twin in environmentally planning sustainable smart cities: A comprehensive systematic review. Environmental Science and Ecotechnology, 20, 100433. https://doi.org/10.1016/j.ese.2024.100433 DOI: https://doi.org/10.1016/j.ese.2024.100433
Chaturvedi, V., & de Vries, W. T. (2021). Machine Learning Algorithms for Urban Land Use Planning: A Review. Urban Science, 5(3), Article 3. https://doi.org/10.3390/urbansci5030068 DOI: https://doi.org/10.3390/urbansci5030068
Correia, C. R., & Roseland, M. (2022). Addressing Negative Externalities of Urban Development: Toward a More Sustainable Approach. Urban Science, 6(2), 38. https://doi.org/10.3390/urbansci6020038 DOI: https://doi.org/10.3390/urbansci6020038
Damioli, G., Van Roy, V., Vertesy, D., & Vivarelli, M. (2025). Is artificial intelligence leading to a new technological paradigm? Structural Change and Economic Dynamics, 72, 347-359. https://doi.org/10.1016/j.strueco.2024.12.006 DOI: https://doi.org/10.1016/j.strueco.2024.12.006
Delgado Enales, I. (2024). Advanced optimization and data modeling techniques to improve accesibility and thermal comfort in urban plannning. https://doi.org/10/73521
Delgado-Enales, I., Molina-Costa, P., Osaba, E., Urra-Uriarte, S., & Del Ser, J. (2022). Improving the Urban Accessibility of Older Pedestrians using Multi-objective Optimization. 2022 IEEE Congress on Evolutionary Computation (CEC), 1-8. https://doi.org/10.1109/CEC55065.2022.9870432 DOI: https://doi.org/10.1109/CEC55065.2022.9870432
D’Ignazio, C., & Klein, L. F. (2020). Data Feminism. The MIT Press. https://doi.org/10.7551/mitpress/11805.001.0001 DOI: https://doi.org/10.7551/mitpress/11805.001.0001
Fernández Álvarez, L., & Garaizar Sagarminaga, P. (2024). La inteligencia artificial explicada a todos los públicos (castellano). A Fin de Cuentos. https://afindecuentos.com/libros/la-inteligencia-artificial-explicada-a-todos-los-publicos/
Gao, R. X., Krüger, J., Merklein, M., Möhring, H.-C., & Váncza, J. (2024). Artificial Intelligence in manufacturing: State of the art, perspectives, and future directions. CIRP Annals, 73(2), 723-749. https://doi.org/10.1016/j.cirp.2024.04.101 DOI: https://doi.org/10.1016/j.cirp.2024.04.101
Garg, P. K. (2021). Overview of Artificial Intelligence. En Artificial Intelligence. Chapman and Hall/CRC. DOI: https://doi.org/10.1201/9781003140351-2
Gong, Y., Liu, G., Xue, Y., Li, R., & Meng, L. (2023). A survey on dataset quality in machine learning. Information and Software Technology, 162, 107268. https://doi.org/10.1016/j.infsof.2023.107268 DOI: https://doi.org/10.1016/j.infsof.2023.107268
Hamann, K. R. S., Bertel, M. P., Ryszawska, B., Lurger, B., Szymański, P., Rozwadowska, M., Goedkoop, F., Jans, L., Perlaviciute, G., Masson, T., Fritsche, I., Favaro, T., Hofer, A., Eisenberger, I., Gutschi, C., Grosche, C., Held, J., Athenstaedt, U., & Corcoran, K. (2023). An interdisciplinary understanding of energy citizenship: Integrating psychological, legal, and economic perspectives on a citizen-centred sustainable energy transition. Energy Research & Social Science, 97, 102959. https://doi.org/10.1016/j.erss.2023.102959 DOI: https://doi.org/10.1016/j.erss.2023.102959
He, W., & Chen, M. (2024). Advancing Urban Life: A Systematic Review of Emerging Technologies and Artificial Intelligence in Urban Design and Planning. Buildings, 14(3), Article 3. https://doi.org/10.3390/buildings14030835 DOI: https://doi.org/10.3390/buildings14030835
Korobeinikova, A., Danilina, N., & Teplova, I. (2024). Planning Public Space Climate Comfortability: A GIS-Based Algorithm for the Compact Cities of the Far North. Land, 13(11), Article 11. https://doi.org/10.3390/land13111763 DOI: https://doi.org/10.3390/land13111763
Koutra, S., & Ioakimidis, C. S. (2023). Unveiling the Potential of Machine Learning Applications in Urban Planning Challenges. Land, 12(1), Article 1. https://doi.org/10.3390/land12010083 DOI: https://doi.org/10.3390/land12010083
Liu, J., Kong, X., Xia, F., Bai, X., Wang, L., Qing, Q., & Lee, I. (2018). Artificial Intelligence in the 21st Century. IEEE Access, 6, 34403-34421. https://doi.org/10.1109/ACCESS.2018.2819688 DOI: https://doi.org/10.1109/ACCESS.2018.2819688
Lu, H., Li, Y., Chen, M., Kim, H., & Serikawa, S. (2018). Brain Intelligence: Go beyond Artificial Intelligence. Mobile Networks and Applications, 23(2), 368-375. https://doi.org/10.1007/s11036-017-0932-8 DOI: https://doi.org/10.1007/s11036-017-0932-8
Mashhood, M., Salman, H., Amjad, R., & Nisar, H. (2023). The Advantages of Using Artificial Intelligence in Urban Planning – A Review of Literature. STATISTICS, COMPUTING AND INTERDISCIPLINARY RESEARCH, 5(2), Article 2. https://doi.org/10.52700/scir.v5i2.125 DOI: https://doi.org/10.52700/scir.v5i2.125
Mohammed, S., Budach, L., Feuerpfeil, M., Ihde, N., Nathansen, A., Noack, N., Patzlaff, H., Naumann, F., & Harmouch, H. (2025). The effects of data quality on machine learning performance on tabular data. Information Systems, 132, 102549. https://doi.org/10.1016/j.is.2025.102549 DOI: https://doi.org/10.1016/j.is.2025.102549
Molina-Costa, P. (2024). La planificación urbana en la era de la digitalización. In Ciudad digital Conectividad y (des)aceleración. CATARATA. https://www.catarata.org/libro/ciudad-digital_150546/
Moore, G. E. (2006). Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-State Circuits Society Newsletter, 11(3), 33-35. https://doi.org/10.1109/N-SSC.2006.4785860 DOI: https://doi.org/10.1109/N-SSC.2006.4785860
Park, C., No, W., Choi, J., & Kim, Y. (2023). Development of an AI advisor for conceptual land use planning. Cities, 138, 104371. https://doi.org/10.1016/j.cities.2023.104371 DOI: https://doi.org/10.1016/j.cities.2023.104371
Pericault, Y., Viklander, M., & Hedström, A. (2023). Modelling the long-term sustainability impacts of coordination policies for urban infrastructure rehabilitation. Water Research, 236, 119912. https://doi.org/10.1016/j.watres.2023.119912 DOI: https://doi.org/10.1016/j.watres.2023.119912
Rjab, A. B., Mellouli, S., & Corbett, J. (2023). Barriers to artificial intelligence adoption in smart cities: A systematic literature review and research agenda. Government Information Quarterly, 40(3), 101814. https://doi.org/10.1016/j.giq.2023.101814 DOI: https://doi.org/10.1016/j.giq.2023.101814
Sanchez, T. W., Fu, X., Yigitcanlar, T., & Ye, X. (2024). The Research Landscape of AI in Urban Planning: A Topic Analysis of the Literature with ChatGPT. Urban Science, 8(4), Article 4. https://doi.org/10.3390/urbansci8040197 DOI: https://doi.org/10.3390/urbansci8040197
Shulajkovska, M., Smerkol, M., Noveski, G., & Gams, M. (2024). Enhancing Urban Sustainability: Developing an Open-Source AI Framework for Smart Cities. Smart Cities, 7(5), Article 5. https://doi.org/10.3390/smartcities7050104 DOI: https://doi.org/10.3390/smartcities7050104
Shumway, R. H., & Stoffer, D. S. (s. f.). Time Series Analysis and Its Applications.
Urra-Uriarte, S., Herranz-Pascual, K., Molina-Costa, P., Martin Roncero, U., & Glodeanu, A. (2024). An Age-Friendly Neighbourhood Index as a Long-Term Urban Planning Decision-Making Tool. Urban Science, 8(3), Article 3. https://doi.org/10.3390/urbansci8030127 DOI: https://doi.org/10.3390/urbansci8030127
Urrutia-Azcona, K., Usobiaga-Ferrer, E., De Agustín-Camacho, P., Molina-Costa, P., Benedito-Bordonau, M., & Flores-Abascal, I. (2021). ENER-BI: Integrating Energy and Spatial Data for Cities’ Decarbonisation Planning. Sustainability, 13(1), Article 1. https://doi.org/10.3390/su13010383 DOI: https://doi.org/10.3390/su13010383
Villanueva-Merino, A., Urra-Uriarte, S., Izkara, J. L., Campos-Cordobes, S., Aranguren, A., & Molina-Costa, P. (2024). Leveraging Local Digital Twins for planning age-friendly urban environments. Cities, 155, 105458. https://doi.org/10.1016/j.cities.2024.105458 DOI: https://doi.org/10.1016/j.cities.2024.105458
Wu, S. Z. (2025). The AI City. Springer Nature. https://doi.org/10.1007/978-981-96-2560-4 DOI: https://doi.org/10.1007/978-981-96-2560-4
Xiao Ting Cheng, Ming Wang, & XingQi Fan. (2025). Generation of Personalized Urban Public Space Color Design Scheme Assisted by Artificial Intelligence | International Journal of High Speed Electronics and Systems. https://www.worldscientific.com/doi/10.1142/S0129156425401615 DOI: https://doi.org/10.1142/S0129156425401615
Zheng, Y., Lin, Y., Zhao, L., Wu, T., Jin, D., & Li, Y. (2023). Spatial planning of urban communities via deep reinforcement learning. Nature Computational Science, 3(9), 748-762. https://doi.org/10.1038/s43588-023-00503-5 DOI: https://doi.org/10.1038/s43588-023-00503-5
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y el derecho de edición

Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor.
- Los autores/as ceden a la revista el derecho de la primera publicación. La revista también posee los derechos de edición.
- Todos los contenidos publicados se regulan mediante una Licencia Atribución/Reconocimiento-SinDerivados 4.0 Internacional. Acceda a la versión informativa y texto legal de la licencia. En virtud de ello, se permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista. Si transforma el material, no podrá distribuir el trabajo modificado.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales), una vez publicado en la revista y citando a la misma ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).







