Seguridad espacial de los peatones en las zonas escolares de Riad: un enfoque basado en datos

Evaluación de la seguridad espacial de los peatones en las zonas escolares de Riad mediante regresión lineal múltiple y aprendizaje automático: un enfoque basado en datos

Autores/as

  • Ala Husni Alsoud Consolidated Consultants Group (CCG)
  • Ahmad Alomari Consolidated Consultants Group (CCG) https://orcid.org/0000-0002-4046-8965
  • MOAMAR QRARAH Consolidated Consultants Group (CCG)
  • ZAKI ABU AHMAD

DOI:

https://doi.org/10.62161/sauc.v11.5977

Palabras clave:

Zona escolar, Seguridad vial, Peatones, Espacial, Regresión, Aprendizaje automático, Inteligencia Artificial

Resumen

Este estudio analiza de forma exhaustiva la densidad de atropellos de peatones (el número de atropellos por kilómetro cuadrado de superficie del distrito) en las zonas escolares de Riad, empleando técnicas avanzadas de inteligencia artificial (IA), como la regresión lineal múltiple (MLR) y el aprendizaje automático (ML), con el fin de mejorar la eficiencia urbana, la calidad de vida y la resiliencia. Se recopilaron datos de 884 zonas escolares distribuidas por Riad, que abarcaban diversos contextos infraestructurales, socioeconómicos y demográficos. El modelo MLR optimizado identificó predictores significativos, como la longitud de las carreteras del distrito, la gravedad media de los accidentes (EPDO), la renta media, la densidad de población y la disponibilidad de paradas de transporte público, que en conjunto explicaban aproximadamente el 65 % de la variabilidad de la densidad de accidentes. El modelo ML Bosque aleatorio mejoró aún más la precisión predictiva (R² ≈ 0,88), revelando interacciones complejas y no lineales entre variables clave, como el volumen de tráfico, los límites de velocidad, el número de carriles, la disponibilidad de pasos de peatones y la población estudiantil. 

Descargas

Los datos de descargas todavía no están disponibles.

Estadísticas globales ℹ️

Totales acumulados desde su publicación
49
Visualizaciones
21
Descargas
70
Total
Descargas por formato:
PDF 11 PDF (English) 10

Biografía del autor/a

Ahmad Alomari, Consolidated Consultants Group (CCG)

Dr. Ahmad H. Alomari is a Corresponding Author and Traffic & Transportation Expert at Consolidated Consultants Group (CCG), with extensive consultancy experience across the United States, Saudi Arabia, and Jordan. He also serves as Professor of Civil Engineering at Yarmouk University, Jordan, specializing in transportation engineering, traffic operation, transportation planning, road safety, and smart mobility solutions.

Citas

Alharbi, R., Alghamdi, A., Al-Jafar, R., Almuwallad, A., & Chowdhury, S. (2024). Identifying the key characteristics, trends, and seasonality of pedestrian traffic injury at a major trauma center in Saudi Arabia: a registry-based retrospective cohort study, 2017–2022. BMC emergency medicine, 24(1), 135. https://doi.org/10.1186/s12873-024-01051-5

Alomari, A. H., Al-Deek, H., Sandt, A., Rogers Jr, J. H., & Hussain, O. (2016). Regional evaluation of bus rapid transit with and without transit signal priority. Transportation Research Record, 2554(1), 46-59. https://doi.org/10.3141/2554-06

Bahrami, V., Lavrenz, S., & Ahmed, M. M. (2024). Severity Analysis of Pedestrian and Bike Crashes in School Buffer Zones. Transportation Research Record, 03611981241297682. https://doi.org/10.1177/03611981241297682

Datasaudi. (2025). A unified platform to present and analyze the latest economic and social data for the Kingdom. Ministry of Economy & Planning. Kingdom of Saudi Arabia. https://datasaudi.sa/en

DiMaggio, C., & Li, G. (2013). Effectiveness of a safe routes to school program in preventing school-aged pedestrian injury. Pediatrics, 131(2), 290-296. https://doi.org/10.1542/peds.2012-2182

Donnell, E. T., Hanks, E., Porter, R. J., Cook, L., Srinivasan, R., Li, F., ... & Eccles, K. A. (2020). The Development of Crash Modification Factors: Highway Safety Statistical Paper Synthesis. No. FHWA-HRT-20-069. United States. FHWA, Federal Highway Administration.. https://www.fhwa.dot.gov/publications/research/safety/20069/20069.pdf

Ehsani, J. P., Michael, J. P., & MacKENZIE, E. J. (2023). The future of road safety: challenges and opportunities. The Milbank Quarterly, 101(Suppl 1), 613. https://doi.org/10.1111/1468-0009.12644

Esri. (2025). ArcGIS Pro, The world's leading desktop GIS software. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview

Eun, S. J. (2023). Effects of tougher school zone laws on road traffic safety in school zones for children in South Korea. Journal of Transport & Health, 32, 101687. https://doi.org/10.1016/j.jth.2023.101687

Farid, A., Lin, E., & Pande, A. (2024). Analysis of School Zone Crash Severities with an Equity Lens: A Random Parameters Modeling Approach. Transportation Research Record, 03611981241295716. https://doi.org/10.1177/03611981241295716

Flanagan, R. and Morgan, R. (2023). Improving traffic safety during arrival and dismissal for students at the Quinsigamond School. Project Report. Worcester Polytechnic Institute, MA, United States. https://digital.wpi.edu/downloads/rr172143p

Forward, S., Henriksson, P., Silvano, A. P., Miyoba, T., Sinkala, S., Mawele, S., & Mwamba, D. (2025). Increasing traffic safety at schools in Zambia: a before and after study. Reg. No., VTI: 2022/0296-8.3 https://urn.kb.se/resolve?urn=urn:nbn:se:vti:diva-21493

Hu, X., Deng, H., Liu, H., Zhou, J., Liang, H., Chen, L., & Zhang, L. (2025). Assessment of the collision risk on the road around schools during morning peak period. Accident Analysis & Prevention, 210, 107854. https://doi.org/10.1016/j.aap.2024.107854

Ivan, K., Benedek, J., & Ciobanu, S. M. (2019). School-aged pedestrian–vehicle crash vulnerability. Sustainability, 11(4), 1214. https://doi.org/10.3390/su11041214

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning: with Applications in R. (2nd ed.). Springer.

Kingham, S., Sabel, C. E., & Bartie, P. (2011). The impact of the ‘school run’on road traffic accidents: A spatio-temporal analysis. Journal of transport geography, 19(4), 705-711. https://doi.org/10.1016/j.jtrangeo.2010.08.011

Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2005). Applied Linear Statistical Models. McGraw-Hill.

Lee, G., Park, Y., Kim, J., & Cho, G. H. (2016). Association between intersection characteristics and perceived crash risk among school-aged children. Accident Analysis & Prevention, 97, 111-121. https://doi.org/10.1016/j.aap.2016.09.001

Lee, I. J., Sagar, S., Agarwal, N., Srinivasan, S., & Steiner, R. (2024). Data-Driven Approach to Develop a Master Plan to Prioritize Schools for the Safe Routes to School Program. Transportation Research Record, 03611981241250019. https://doi.org/10.1177/03611981241250019

Lordswill, N. T., Jean-Francois, W., Fondzenyuy, S. K., Feudjio Tezong, S. L., Ndonue, A. R., Usami, D. S., & Persia, L. (2024). Assessment and countermeasures selection for safer roads to schools in the city of Yaoundé: progressive evaluation using surveys and iRAP methodology. Transportation Research Procedia, 1-8. AIIT 4th International Conference on Transport Infrastructure and Systems (TIS ROMA 2024), 19th - 20th September 2024, Rome Italy. https://iris.uniroma1.it/bitstream/11573/1722401/1/Ndingwan_Assessment-and-countermeasures-selection_2024.pdf

Mienye, I. D., & Jere, N. (2024). A survey of decision trees: Concepts, algorithms, and applications. IEEE access. https://doi.org/10.1109/ACCESS.2024.3416838

Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons.

Moradi, A., Soori, H., Kavousi, A., Eshghabadi, F., & Jamshidi, E. (2016). Spatial factors affecting the frequency of pedestrian traffic crashes: A systematic review. Archives of trauma research, 5(4), e30796. https://doi.org/10.5812/atr.30796

Oh, J., & Kim, J. (2025). Potential risk factors of child pedestrian crashes after-school hours in Seoul, Korea. Journal of Transport Geography, 123, 104084. https://doi.org/10.1016/j.jtrangeo.2024.104084

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.

Probst, P., Wright, M. N., & Boulesteix, A.-L. (2020). Hyperparameters and tuning strategies for Random Forest. WIREs Data Mining and Knowledge Discovery, 10(3), e1371. https://doi.org/10.1002/widm.1371

Regidor, J. R. F., Kamid, S. A., Latonero, G. S. D., Abao, N. S. A., & Sigua, R. D. (2023). Evaluation and Improvement of Road Safety In the Vicinity of Schools. Philippine Institute of Civil Engineers 2023 National Convention. https://www.researchgate.net/publication/378077600_Evaluation_and_Improvement_of_Road_Safety_in_the_Vicinity_of_Schools

Rothman, L., Buliung, R., Howard, A., Macarthur, C., & Macpherson, A. (2017a). The school environment and student car drop-off at elementary schools. Travel Behaviour and Society, 9, 50-57. https://doi.org/10.1016/j.tbs.2017.03.001

Rothman, L., Howard, A., Buliung, R., Macarthur, C., Richmond, S. A., & Macpherson, A. (2017b). School environments and social risk factors for child pedestrian-motor vehicle collisions: A case-control study. Accident Analysis & Prevention, 98, 252-258. https://doi.org/10.1016/j.aap.2016.10.017

Rothman, L., Macarthur, C., To, T., Buliung, R., & Howard, A. (2015). Motor vehicle-pedestrian collisions and walking to school: the role of the built environment. Pediatrics, 133(5), 776-784. https://doi.org/10.1542/peds.2013-2317

Shuai, Z., & Kwon, T. J. (2025). Analyzing Winter Crash Dynamics Using Spatial Analysis and Crash Frequency Prediction Models with SHAP Interpretability. Future Transportation, 5(1), 17. https://doi.org/10.3390/futuretransp5010017

Tetali, S., Edwards, P., Murthy, G. V. S., & Roberts, I. (2016). Road traffic injuries to children during the school commute in Hyderabad, India: cross-sectional survey. Injury prevention, 22(3), 171-175. https://doi.org/10.1136/injuryprev-2015-041854

Turner, S., Sener, I. N., Martin, M. E., Das, S., Hampshire, R. C., Fitzpatrick, K., ... & Wijesundera, R. K. (2017). Synthesis of methods for estimating pedestrian and bicyclist exposure to risk at areawide levels and on specific transportation facilities. No. FHWA-SA-17-041. United States. Department of Transportation. Federal Highway Administration. Office of Safety. https://highways.dot.gov/sites/fhwa.dot.gov/files/2022-06/fhwasa17014.pdf

UNICEF. (2022). Technical guidance for child and adolescent road safety. New York: United Nations Children’s Fund.

University of Cambridge. (2019). Children who walk to school less likely to be overweight or obese. ScienceDaily. ScienceDaily, 21 May 2019. www.sciencedaily.com/releases/2019/05/190521101344.htm.

Washington, S., Karlaftis, M. G., Mannering, F., & Anastasopoulos, P. (2020). Statistical and econometric methods for transportation data analysis. Chapman and Hall/CRC.

WHO, World Health Organization. (2023a). Global status report on road safety 2023. Geneva: WHO Press. https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/global-status-report-on-road-safety-2023

WHO, World Health Organization. (2023b). Reducing Road Crash Deaths in the Kingdom of Saudi Arabia. https://www.who.int/news/item/20-06-2023-reducing-road-crash-deaths-in-the-kingdom-of-saudi-arabia

Yamarthi, D., Raman, H., Parvin, S. (2025). United States Road Accident Prediction using Machine Learning Algorithms. arXiv:2505.06246v1 28 Apr 2025. https://arxiv.org/pdf/2505.06246v1

Yu, C. Y., & Zhu, X. (2016). Planning for safe schools: Impacts of school siting and surrounding environments on traffic safety. Journal of Planning Education and Research, 36(4), 476-486. https://doi.org/10.1177/0739456X15616460

Zhang, K., Tamakloe, R., Cao, M., & Kim, I. (2024). Exploring fatal/severe pedestrian injury crash frequency at school zone crash hotspots: using interpretable machine learning to assess the micro-level street environment. Journal of Transport Geography, 121, 104034. https://doi.org/10.1016/j.jtrangeo.2024.104034

Zhao, X., Li, J., Ding, H., Zhang, G., & Rong, J. (2015). A generic approach for examining the effectiveness of traffic control devices in school zones. Accident Analysis & Prevention, 82, 134-142. https://doi.org/10.1016/j.aap.2015.05.021

Publicado

2025-12-01

Cómo citar

Husni Alsoud, A., Alomari, A., QRARAH , M., & ABU AHMAD , Z. (2025). Seguridad espacial de los peatones en las zonas escolares de Riad: un enfoque basado en datos: Evaluación de la seguridad espacial de los peatones en las zonas escolares de Riad mediante regresión lineal múltiple y aprendizaje automático: un enfoque basado en datos. Street Art & Urban Creativity, 11(7), 231–257. https://doi.org/10.62161/sauc.v11.5977

Número

Sección

Monográfico SmartCityExpo