Seguridad espacial de los peatones en las zonas escolares de Riad: un enfoque basado en datos
Evaluación de la seguridad espacial de los peatones en las zonas escolares de Riad mediante regresión lineal múltiple y aprendizaje automático: un enfoque basado en datos
DOI:
https://doi.org/10.62161/sauc.v11.5977Palabras clave:
Zona escolar, Seguridad vial, Peatones, Espacial, Regresión, Aprendizaje automático, Inteligencia ArtificialResumen
Este estudio analiza de forma exhaustiva la densidad de atropellos de peatones (el número de atropellos por kilómetro cuadrado de superficie del distrito) en las zonas escolares de Riad, empleando técnicas avanzadas de inteligencia artificial (IA), como la regresión lineal múltiple (MLR) y el aprendizaje automático (ML), con el fin de mejorar la eficiencia urbana, la calidad de vida y la resiliencia. Se recopilaron datos de 884 zonas escolares distribuidas por Riad, que abarcaban diversos contextos infraestructurales, socioeconómicos y demográficos. El modelo MLR optimizado identificó predictores significativos, como la longitud de las carreteras del distrito, la gravedad media de los accidentes (EPDO), la renta media, la densidad de población y la disponibilidad de paradas de transporte público, que en conjunto explicaban aproximadamente el 65 % de la variabilidad de la densidad de accidentes. El modelo ML Bosque aleatorio mejoró aún más la precisión predictiva (R² ≈ 0,88), revelando interacciones complejas y no lineales entre variables clave, como el volumen de tráfico, los límites de velocidad, el número de carriles, la disponibilidad de pasos de peatones y la población estudiantil.
Descargas
Estadísticas globales ℹ️
|
49
Visualizaciones
|
21
Descargas
|
|
70
Total
|
|
Citas
Alharbi, R., Alghamdi, A., Al-Jafar, R., Almuwallad, A., & Chowdhury, S. (2024). Identifying the key characteristics, trends, and seasonality of pedestrian traffic injury at a major trauma center in Saudi Arabia: a registry-based retrospective cohort study, 2017–2022. BMC emergency medicine, 24(1), 135. https://doi.org/10.1186/s12873-024-01051-5
Alomari, A. H., Al-Deek, H., Sandt, A., Rogers Jr, J. H., & Hussain, O. (2016). Regional evaluation of bus rapid transit with and without transit signal priority. Transportation Research Record, 2554(1), 46-59. https://doi.org/10.3141/2554-06
Bahrami, V., Lavrenz, S., & Ahmed, M. M. (2024). Severity Analysis of Pedestrian and Bike Crashes in School Buffer Zones. Transportation Research Record, 03611981241297682. https://doi.org/10.1177/03611981241297682
Datasaudi. (2025). A unified platform to present and analyze the latest economic and social data for the Kingdom. Ministry of Economy & Planning. Kingdom of Saudi Arabia. https://datasaudi.sa/en
DiMaggio, C., & Li, G. (2013). Effectiveness of a safe routes to school program in preventing school-aged pedestrian injury. Pediatrics, 131(2), 290-296. https://doi.org/10.1542/peds.2012-2182
Donnell, E. T., Hanks, E., Porter, R. J., Cook, L., Srinivasan, R., Li, F., ... & Eccles, K. A. (2020). The Development of Crash Modification Factors: Highway Safety Statistical Paper Synthesis. No. FHWA-HRT-20-069. United States. FHWA, Federal Highway Administration.. https://www.fhwa.dot.gov/publications/research/safety/20069/20069.pdf
Ehsani, J. P., Michael, J. P., & MacKENZIE, E. J. (2023). The future of road safety: challenges and opportunities. The Milbank Quarterly, 101(Suppl 1), 613. https://doi.org/10.1111/1468-0009.12644
Esri. (2025). ArcGIS Pro, The world's leading desktop GIS software. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
Eun, S. J. (2023). Effects of tougher school zone laws on road traffic safety in school zones for children in South Korea. Journal of Transport & Health, 32, 101687. https://doi.org/10.1016/j.jth.2023.101687
Farid, A., Lin, E., & Pande, A. (2024). Analysis of School Zone Crash Severities with an Equity Lens: A Random Parameters Modeling Approach. Transportation Research Record, 03611981241295716. https://doi.org/10.1177/03611981241295716
Flanagan, R. and Morgan, R. (2023). Improving traffic safety during arrival and dismissal for students at the Quinsigamond School. Project Report. Worcester Polytechnic Institute, MA, United States. https://digital.wpi.edu/downloads/rr172143p
Forward, S., Henriksson, P., Silvano, A. P., Miyoba, T., Sinkala, S., Mawele, S., & Mwamba, D. (2025). Increasing traffic safety at schools in Zambia: a before and after study. Reg. No., VTI: 2022/0296-8.3 https://urn.kb.se/resolve?urn=urn:nbn:se:vti:diva-21493
Hu, X., Deng, H., Liu, H., Zhou, J., Liang, H., Chen, L., & Zhang, L. (2025). Assessment of the collision risk on the road around schools during morning peak period. Accident Analysis & Prevention, 210, 107854. https://doi.org/10.1016/j.aap.2024.107854
Ivan, K., Benedek, J., & Ciobanu, S. M. (2019). School-aged pedestrian–vehicle crash vulnerability. Sustainability, 11(4), 1214. https://doi.org/10.3390/su11041214
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning: with Applications in R. (2nd ed.). Springer.
Kingham, S., Sabel, C. E., & Bartie, P. (2011). The impact of the ‘school run’on road traffic accidents: A spatio-temporal analysis. Journal of transport geography, 19(4), 705-711. https://doi.org/10.1016/j.jtrangeo.2010.08.011
Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2005). Applied Linear Statistical Models. McGraw-Hill.
Lee, G., Park, Y., Kim, J., & Cho, G. H. (2016). Association between intersection characteristics and perceived crash risk among school-aged children. Accident Analysis & Prevention, 97, 111-121. https://doi.org/10.1016/j.aap.2016.09.001
Lee, I. J., Sagar, S., Agarwal, N., Srinivasan, S., & Steiner, R. (2024). Data-Driven Approach to Develop a Master Plan to Prioritize Schools for the Safe Routes to School Program. Transportation Research Record, 03611981241250019. https://doi.org/10.1177/03611981241250019
Lordswill, N. T., Jean-Francois, W., Fondzenyuy, S. K., Feudjio Tezong, S. L., Ndonue, A. R., Usami, D. S., & Persia, L. (2024). Assessment and countermeasures selection for safer roads to schools in the city of Yaoundé: progressive evaluation using surveys and iRAP methodology. Transportation Research Procedia, 1-8. AIIT 4th International Conference on Transport Infrastructure and Systems (TIS ROMA 2024), 19th - 20th September 2024, Rome Italy. https://iris.uniroma1.it/bitstream/11573/1722401/1/Ndingwan_Assessment-and-countermeasures-selection_2024.pdf
Mienye, I. D., & Jere, N. (2024). A survey of decision trees: Concepts, algorithms, and applications. IEEE access. https://doi.org/10.1109/ACCESS.2024.3416838
Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons.
Moradi, A., Soori, H., Kavousi, A., Eshghabadi, F., & Jamshidi, E. (2016). Spatial factors affecting the frequency of pedestrian traffic crashes: A systematic review. Archives of trauma research, 5(4), e30796. https://doi.org/10.5812/atr.30796
Oh, J., & Kim, J. (2025). Potential risk factors of child pedestrian crashes after-school hours in Seoul, Korea. Journal of Transport Geography, 123, 104084. https://doi.org/10.1016/j.jtrangeo.2024.104084
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.
Probst, P., Wright, M. N., & Boulesteix, A.-L. (2020). Hyperparameters and tuning strategies for Random Forest. WIREs Data Mining and Knowledge Discovery, 10(3), e1371. https://doi.org/10.1002/widm.1371
Regidor, J. R. F., Kamid, S. A., Latonero, G. S. D., Abao, N. S. A., & Sigua, R. D. (2023). Evaluation and Improvement of Road Safety In the Vicinity of Schools. Philippine Institute of Civil Engineers 2023 National Convention. https://www.researchgate.net/publication/378077600_Evaluation_and_Improvement_of_Road_Safety_in_the_Vicinity_of_Schools
Rothman, L., Buliung, R., Howard, A., Macarthur, C., & Macpherson, A. (2017a). The school environment and student car drop-off at elementary schools. Travel Behaviour and Society, 9, 50-57. https://doi.org/10.1016/j.tbs.2017.03.001
Rothman, L., Howard, A., Buliung, R., Macarthur, C., Richmond, S. A., & Macpherson, A. (2017b). School environments and social risk factors for child pedestrian-motor vehicle collisions: A case-control study. Accident Analysis & Prevention, 98, 252-258. https://doi.org/10.1016/j.aap.2016.10.017
Rothman, L., Macarthur, C., To, T., Buliung, R., & Howard, A. (2015). Motor vehicle-pedestrian collisions and walking to school: the role of the built environment. Pediatrics, 133(5), 776-784. https://doi.org/10.1542/peds.2013-2317
Shuai, Z., & Kwon, T. J. (2025). Analyzing Winter Crash Dynamics Using Spatial Analysis and Crash Frequency Prediction Models with SHAP Interpretability. Future Transportation, 5(1), 17. https://doi.org/10.3390/futuretransp5010017
Tetali, S., Edwards, P., Murthy, G. V. S., & Roberts, I. (2016). Road traffic injuries to children during the school commute in Hyderabad, India: cross-sectional survey. Injury prevention, 22(3), 171-175. https://doi.org/10.1136/injuryprev-2015-041854
Turner, S., Sener, I. N., Martin, M. E., Das, S., Hampshire, R. C., Fitzpatrick, K., ... & Wijesundera, R. K. (2017). Synthesis of methods for estimating pedestrian and bicyclist exposure to risk at areawide levels and on specific transportation facilities. No. FHWA-SA-17-041. United States. Department of Transportation. Federal Highway Administration. Office of Safety. https://highways.dot.gov/sites/fhwa.dot.gov/files/2022-06/fhwasa17014.pdf
UNICEF. (2022). Technical guidance for child and adolescent road safety. New York: United Nations Children’s Fund.
University of Cambridge. (2019). Children who walk to school less likely to be overweight or obese. ScienceDaily. ScienceDaily, 21 May 2019. www.sciencedaily.com/releases/2019/05/190521101344.htm.
Washington, S., Karlaftis, M. G., Mannering, F., & Anastasopoulos, P. (2020). Statistical and econometric methods for transportation data analysis. Chapman and Hall/CRC.
WHO, World Health Organization. (2023a). Global status report on road safety 2023. Geneva: WHO Press. https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/global-status-report-on-road-safety-2023
WHO, World Health Organization. (2023b). Reducing Road Crash Deaths in the Kingdom of Saudi Arabia. https://www.who.int/news/item/20-06-2023-reducing-road-crash-deaths-in-the-kingdom-of-saudi-arabia
Yamarthi, D., Raman, H., Parvin, S. (2025). United States Road Accident Prediction using Machine Learning Algorithms. arXiv:2505.06246v1 28 Apr 2025. https://arxiv.org/pdf/2505.06246v1
Yu, C. Y., & Zhu, X. (2016). Planning for safe schools: Impacts of school siting and surrounding environments on traffic safety. Journal of Planning Education and Research, 36(4), 476-486. https://doi.org/10.1177/0739456X15616460
Zhang, K., Tamakloe, R., Cao, M., & Kim, I. (2024). Exploring fatal/severe pedestrian injury crash frequency at school zone crash hotspots: using interpretable machine learning to assess the micro-level street environment. Journal of Transport Geography, 121, 104034. https://doi.org/10.1016/j.jtrangeo.2024.104034
Zhao, X., Li, J., Ding, H., Zhang, G., & Rong, J. (2015). A generic approach for examining the effectiveness of traffic control devices in school zones. Accident Analysis & Prevention, 82, 134-142. https://doi.org/10.1016/j.aap.2015.05.021
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación y el derecho de edición

Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor.
- Los autores/as ceden a la revista el derecho de la primera publicación. La revista también posee los derechos de edición.
- Todos los contenidos publicados se regulan mediante una Licencia Atribución/Reconocimiento-SinDerivados 4.0 Internacional. Acceda a la versión informativa y texto legal de la licencia. En virtud de ello, se permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista. Si transforma el material, no podrá distribuir el trabajo modificado.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales), una vez publicado en la revista y citando a la misma ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).







