AI-Based Prediction Models for Urban Parking Availability
A Case Study of Valencia
DOI:
https://doi.org/10.62161/sauc.v11.5990Keywords:
Urban parking prediction, Smart City, Artificial Intelligence, Machine Learning, Recurrent neural networksAbstract
Efficient parking access is crucial for urban mobility in smart cities. This study presents a pilot system predicting public parking occupancy in Valencia, Spain, using municipal sensor data. We developed and compared recurrent neural network architectures (RNN, LSTM, GRU), achieving accurate forecasts with performance variations across locations and times. Explainable AI methods provided model interpretability and insights into variable influence. Results indicate that baseline recurrent models yield low MAEs, while Bayesian hyperparameter optimisation offers only marginal gains, highlighting the practicality of straightforward recurrent approaches for urban parking prediction.
Downloads
Global Statistics ℹ️
|
5
Views
|
3
Downloads
|
|
8
Total
|
|
References
Awan, F. M., Saleem, Y., Minerva, R., & Crespi, N. (2020). A comparative analysis of machine/deep learning models for parking space availability prediction. Sensors, 20(1), 322. https://doi.org/10.3390/s20010322
Barraco, M., Bicocchi, N., Mamei, M., & Zambonelli, F. (2021). Forecasting parking lots availability: Analysis from a real-world deployment. IEEE International Conference on Pervasive Computing and Communications Workshops (pp. 299–304). IEEE. https://doi.org/10.1109/PERCOMWORKSHOPS51409.2021.9430942
Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M., Ouzounis, G., & Portugali, Y. (2012). Smart cities of the future. The European Physical Journal Special Topics, 214(1), 481–518. https://doi.org/10.1140/epjst/e2012-01703-3
Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., & Ratti, C. (2011). Real-time urban monitoring using cell phones: A case study in Rome. IEEE Transactions on Intelligent Transportation Systems, 12(1), 141–151. https://doi.org/10.1109/TITS.2010.2074196
Chen, G., Zhang, S., Weng, W., & Yang, W. (2023). Residual spatial-temporal graph convolutional neural network for on-street parking availability prediction. International Journal of Sensor Networks, 43(4), 246–257. https://doi.org/10.1504/IJSNET.2023.135840
Cho, K., van Merrienboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder–decoder approaches. Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-8) https://doi.org/10.48550/arXiv.1409.1259
Hasan, S. (2020, 26 de junio). Recurrent Neural Network and it’s variants. Medium. https://medium.com/@hasanshujaat4/recurrent-neural-network-and-its-variants-de75f9ee063
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
Inam, S., Mahmood, A., Khatoon, S., Alshamari, M., & Nawaz, N. (2022). Multisource data integration and comparative analysis of machine learning models for on-street parking prediction. Sustainability, 14(12), 7317. https://doi.org/10.3390/su14127317
Junta de Andalucía & Telefónica. (2021, julio). Un sistema inteligente basado en Big Data permite conocer en tiempo real las plazas libres de aparcamiento en el PCT Cartuja. APTE / PCT Cartuja. https://www.apte.org/sistema-inteligente-basado-big-data-permite-conocer-tiempo-real-plazas-libres-aparcamiento-pct-cartu/
Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765–4774. https://doi.org/10.48550/arXiv.1705.07874
Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., & Damas, L. (2013). Predicting taxi–passenger demand using streaming data. IEEE Transactions on Intelligent Transportation Systems, 14(3), 1393–1402. https://doi.org/10.1109/TITS.2013.2262376
Moreno, D. (2021). Predicting the use of car parks in the province of Barcelona [Tesis doctoral, Universitat Pompeu Fabra]. UPF Repository. http://hdl.handle.net/10230/49219
Pozo, R.F., González, A. B. R., Wilby, M. R., Vinagre Díaz, J. J., & Matesanz, M. V. (2022) Prediction of on-Street parking level of service based on random undersampling decision trees. IEEE Transactions on Intelligent Transportation Systems, 23(7), 8327-8336. https://doi.org/10.1109/TITS.2021.3077985
Sebatli, A., & Çavdur, F. (2023). Prediction of parking space availability using ARIMA and neural networks. Endüstri Mühendisliği Dergisi, 34(1), 86–108. https://doi.org/10.46465/endustrimuhendisligi.1241453
Shoup, D. C. (2005). The high cost of free parking. Planners Press, American Planning Association.
Transformative Mobility SUTP. (2024). Gestión de estacionamientos: Una contribución hacia la movilidad sostenible. GIZ / SUTP. https://transformative-mobility.org/wp-content/uploads/2024/01/GIZ_SUTP_SB2c_Parking-Management_ES-2.pdf
Vieta, G. L. (2024). Modelos predictivos para ocupación de estacionamiento [Trabajo Fin de Máster, Universidad de Sevilla]. idUS Repository. https://hdl.handle.net/11441/161136
Yang, S., Ma, W., Pi, X., & Qian, S. (2019). A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources. Transportation Research Part C: Emerging Technologies, 107, 248–265. https://doi.org/10.1016/j.trc.2019.08.010
Zhang, F., Shang, K., Yan, L., Nan, H., & Miao, Z. (2024). Prediction of parking space availability using improved MAT-LSTM network. ISPRS International Journal of Geo-Information, 13(5), 151. https://doi.org/10.3390/ijgi13050151
Zhao, X., & Zhang, M. (2024). Enhancing predictive models for on-street parking occupancy: Integrating adaptive GCN and GRU with household categories and POI factors. Mathematics, 12(18), 2823. https://doi.org/10.3390/math12182823
Zheng, Y., Capra, L., Wolfson, O., & Yang, H. (2014). Urban computing: Concepts, methodologies, and applications. ACM Transactions on Intelligent Systems and Technology, 5(3), 1–55. https://doi.org/10.1145/2629592
Zheng, Y., Rajasegarar, S., & Leckie, C. (2015). Parking availability prediction for sensor-enabled car parks in smart cities. In IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) (pp. 1–6). IEEE.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Authors retain copyright and transfer to the journal the right of first publication and publishing rights

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Those authors who publish in this journal accept the following terms:
-
Authors retain copyright.
-
Authors transfer to the journal the right of first publication. The journal also owns the publishing rights.
-
All published contents are governed by an Attribution-NoDerivatives 4.0 International License.
Access the informative version and legal text of the license. By virtue of this, third parties are allowed to use what is published as long as they mention the authorship of the work and the first publication in this journal. If you transform the material, you may not distribute the modified work. -
Authors may make other independent and additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (e.g., inclusion in an institutional repository or publication in a book) as long as they clearly indicate that the work was first published in this journal.
- Authors are allowed and recommended to publish their work on the Internet (for example on institutional and personal websites), following the publication of, and referencing the journal, as this could lead to constructive exchanges and a more extensive and quick circulation of published works (see The Effect of Open Access).







