AI-Based Prediction Models for Urban Parking Availability

A Case Study of Valencia

Authors

  • Francesc Domenech
  • Vicente Carot
  • Cristina Portales
  • Inmaculada Coma Tatay Universitat de València

DOI:

https://doi.org/10.62161/sauc.v11.5990

Keywords:

Urban parking prediction, Smart City, Artificial Intelligence, Machine Learning, Recurrent neural networks

Abstract

Efficient parking access is crucial for urban mobility in smart cities. This study presents a pilot system predicting public parking occupancy in Valencia, Spain, using municipal sensor data. We developed and compared recurrent neural network architectures (RNN, LSTM, GRU), achieving accurate forecasts with performance variations across locations and times. Explainable AI methods provided model interpretability and insights into variable influence. Results indicate that baseline recurrent models yield low MAEs, while Bayesian hyperparameter optimisation offers only marginal gains, highlighting the practicality of straightforward recurrent approaches for urban parking prediction.

Downloads

Download data is not yet available.

Global Statistics ℹ️

Cumulative totals since publication
5
Views
3
Downloads
8
Total
Downloads by format:
PDF (Español (España)) 2 PDF 1

References

Awan, F. M., Saleem, Y., Minerva, R., & Crespi, N. (2020). A comparative analysis of machine/deep learning models for parking space availability prediction. Sensors, 20(1), 322. https://doi.org/10.3390/s20010322

Barraco, M., Bicocchi, N., Mamei, M., & Zambonelli, F. (2021). Forecasting parking lots availability: Analysis from a real-world deployment. IEEE International Conference on Pervasive Computing and Communications Workshops (pp. 299–304). IEEE. https://doi.org/10.1109/PERCOMWORKSHOPS51409.2021.9430942

Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M., Ouzounis, G., & Portugali, Y. (2012). Smart cities of the future. The European Physical Journal Special Topics, 214(1), 481–518. https://doi.org/10.1140/epjst/e2012-01703-3

Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., & Ratti, C. (2011). Real-time urban monitoring using cell phones: A case study in Rome. IEEE Transactions on Intelligent Transportation Systems, 12(1), 141–151. https://doi.org/10.1109/TITS.2010.2074196

Chen, G., Zhang, S., Weng, W., & Yang, W. (2023). Residual spatial-temporal graph convolutional neural network for on-street parking availability prediction. International Journal of Sensor Networks, 43(4), 246–257. https://doi.org/10.1504/IJSNET.2023.135840

Cho, K., van Merrienboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder–decoder approaches. Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-8) https://doi.org/10.48550/arXiv.1409.1259

Hasan, S. (2020, 26 de junio). Recurrent Neural Network and it’s variants. Medium. https://medium.com/@hasanshujaat4/recurrent-neural-network-and-its-variants-de75f9ee063

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Inam, S., Mahmood, A., Khatoon, S., Alshamari, M., & Nawaz, N. (2022). Multisource data integration and comparative analysis of machine learning models for on-street parking prediction. Sustainability, 14(12), 7317. https://doi.org/10.3390/su14127317

Junta de Andalucía & Telefónica. (2021, julio). Un sistema inteligente basado en Big Data permite conocer en tiempo real las plazas libres de aparcamiento en el PCT Cartuja. APTE / PCT Cartuja. https://www.apte.org/sistema-inteligente-basado-big-data-permite-conocer-tiempo-real-plazas-libres-aparcamiento-pct-cartu/

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765–4774. https://doi.org/10.48550/arXiv.1705.07874

Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., & Damas, L. (2013). Predicting taxi–passenger demand using streaming data. IEEE Transactions on Intelligent Transportation Systems, 14(3), 1393–1402. https://doi.org/10.1109/TITS.2013.2262376

Moreno, D. (2021). Predicting the use of car parks in the province of Barcelona [Tesis doctoral, Universitat Pompeu Fabra]. UPF Repository. http://hdl.handle.net/10230/49219

Pozo, R.F., González, A. B. R., Wilby, M. R., Vinagre Díaz, J. J., & Matesanz, M. V. (2022) Prediction of on-Street parking level of service based on random undersampling decision trees. IEEE Transactions on Intelligent Transportation Systems, 23(7), 8327-8336. https://doi.org/10.1109/TITS.2021.3077985

Sebatli, A., & Çavdur, F. (2023). Prediction of parking space availability using ARIMA and neural networks. Endüstri Mühendisliği Dergisi, 34(1), 86–108. https://doi.org/10.46465/endustrimuhendisligi.1241453

Shoup, D. C. (2005). The high cost of free parking. Planners Press, American Planning Association.

Transformative Mobility SUTP. (2024). Gestión de estacionamientos: Una contribución hacia la movilidad sostenible. GIZ / SUTP. https://transformative-mobility.org/wp-content/uploads/2024/01/GIZ_SUTP_SB2c_Parking-Management_ES-2.pdf

Vieta, G. L. (2024). Modelos predictivos para ocupación de estacionamiento [Trabajo Fin de Máster, Universidad de Sevilla]. idUS Repository. https://hdl.handle.net/11441/161136

Yang, S., Ma, W., Pi, X., & Qian, S. (2019). A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources. Transportation Research Part C: Emerging Technologies, 107, 248–265. https://doi.org/10.1016/j.trc.2019.08.010

Zhang, F., Shang, K., Yan, L., Nan, H., & Miao, Z. (2024). Prediction of parking space availability using improved MAT-LSTM network. ISPRS International Journal of Geo-Information, 13(5), 151. https://doi.org/10.3390/ijgi13050151

Zhao, X., & Zhang, M. (2024). Enhancing predictive models for on-street parking occupancy: Integrating adaptive GCN and GRU with household categories and POI factors. Mathematics, 12(18), 2823. https://doi.org/10.3390/math12182823

Zheng, Y., Capra, L., Wolfson, O., & Yang, H. (2014). Urban computing: Concepts, methodologies, and applications. ACM Transactions on Intelligent Systems and Technology, 5(3), 1–55. https://doi.org/10.1145/2629592

Zheng, Y., Rajasegarar, S., & Leckie, C. (2015). Parking availability prediction for sensor-enabled car parks in smart cities. In IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) (pp. 1–6). IEEE.

https://doi.org/10.1109/ISSNIP.2015.7106955

Published

2025-11-28

How to Cite

Domenech, F., Carot, V., Portales, C., & Coma Tatay, I. (2025). AI-Based Prediction Models for Urban Parking Availability: A Case Study of Valencia. Street Art & Urban Creativity, 11(7), 1–19. https://doi.org/10.62161/sauc.v11.5990