Visual Programming and Problem-solving to Foster a Positive Attitude Toward Formative Research
DOI:
https://doi.org/10.62161/revvisual.v17.5373Keywords:
Visual programming, Formative research, Engineering students, Problem-solving, Technological resources, Attitude to-wards researchAbstract
This research aims to propose the use of visual programming and the problem-solving method to foster a positive attitude towards formative research among first-year engineering students at a public university in Peru. The classroom activities were designed according to the four phases of the problem-solving method, utilizing an Arduino board, sensors, and a visual programming environment. The results indicate that students’ perception of their attitude towards formative research is predominantly high or very high.
Downloads
References
Acosta-Corporan, R., Martín-García, A. V., & Hernández-Martín, A. (2022). Level of Satisfaction in High School Students With the Use of Computer-Supported Collaborative Learning in the Classroom. Revista Electronica Educare, 26(2). https://doi.org/10.15359/ree.26-2.2
Acuña, E. G. (2023). Strategies to promote research in engineering students in Latin American universities. New Trends in Qualitative Research, 17. https://doi.org/10.36367/ntqr.17.2023.e867
Alvarado, F., Villar-Mayuntupa, G., & Roman-Gonzalez, A. (2020). The formative research in the development of reading and writing skills and their impact on the development of indexed publications by engineering students. 2020 IEEE World Conference on Engineering Education (EDUNINE).
Berland, M., & Wilensky, U. (2015). Comparing Virtual and Physical Robotics Environments for Supporting Complex Systems and Computational Thinking. Journal of Science Education and Technology, 24(5), 628–647. https://doi.org/10.1007/s10956-015-9552-x
Blanco, N., & Alvarado, M. (2005). Escala de actitud hacia el proceso de investigación científico social. Revista de Ciencias Sociales (RCS), XI(3), 537–544.
Bordignon, F., & Iglesias, A. (2018). Introducción al Pensamiento Computacional. In E. Universitaria (Ed.), Innovación y Práctica para el Aprendizaje. EDUCAR S.E. https://unipe.educar.gob.ar/unipe
Castro, S. P. (2018). Diseño y validación de un instrumento para evaluar la actitud hacia la investigación formativa en estudiantes universitarios. Actualidades Pedagógicas, 1(70), 165–182. https://doi.org/10.19052/ap.3996
Chacón, L. (2020). Actitud hacia la investigación formativa y su relación con el desarrollo de habilidades investigativas en los estudiantes del IX y X ciclo de la carrera de ingeniería de sistemas de una universidad privada de Lima. Universidad Tecnológica del Perú.
Ching, Y. H., Hsu, Y. C., & Baldwin, S. (2018). Developing Computational Thinking with Educational Technologies for Young Learners. TechTrends, 62(6), 563–573. https://doi.org/10.1007/s11528-018-0292-7
Cruz Tarrillo, J. J., Pinedo Zumaeta, G. M., & Lescano Chaves, Y. (2021). Actitud hacia la investigación: un análisis afectivo, cognoscitivo y conductual en estudiantes universitarios. Revista Iberoamericana de Tecnología En Educación y Educación En Tecnología, 29, e2. https://doi.org/10.24215/18509959.29.e2
Daniela, L., & Lytras, M. D. (2018). Educational Robotics for Inclusive Education. Technology, Knowledge and Learning, 0123456789. https://doi.org/10.1007/s10758-018-9397-5
De la cruz Casaño, C. (2016). La realidad de la metodología de la investigación en Ingeniería. 1(2), 2–3.
Espinoza, E. E. (2020). La investigación formativa. Una reflexión teórica. Revista Conrado, 16(74), 45–53.
Falloon, G. (2015). What’s the difference? Learning collaboratively using iPads in conventional classrooms. Computers and Education, 84, 62–77. https://doi.org/10.1016/j.compedu.2015.01.010
Fernández, F. H., & Duarte, J. E. (2013). El aprendizaje basado en problemas como estrategia para el desarrollo de competencias específicas en estudiantes de ingeniería. Formacion Universitaria, 6(5), 29–38. https://doi.org/10.4067/S0718-50062013000500005
Fidai, A., Capraro, M. M., & Capraro, R. M. (2020). “Scratch”-ing computational thinking with Arduino: A meta-analysis. Thinking Skills and Creativity, 38(July), 100726. https://doi.org/10.1016/j.tsc.2020.100726
Fronza, I., Corral, L., & Pahl, C. (2019). Combining block-based programming and hardware prototyping to foster computational thinking. SIGITE 2019 - Proceedings of the 20th Annual Conference on Information Technology Education, 55–60. https://doi.org/10.1145/3349266.3351410
Gálvez, N. del C., Gonzáles, Y., & Monsalve, M. (2019). Actitud hacia la investigación científica al final de la carrera de Enfermería en Perú. Gac Med Bol, 42(1), 32–37.
Guillermo, W. (2010). La formación investigativa y los procesos de investigación científico-tecnológica en la Universidad Católica de Colombia. https://repository.ucatolica.edu.co/server/api/core/bitstreams/c97fc4af-0956-4d47-97be-8f6ed52d5d05/content
Harangus, K., & Kátai, Z. (2020). Computational thinking in secondary and higher education (M. L. & G. A., Eds.; Vol. 46, pp. 615–622). Elsevier B.V. https://doi.org/10.1016/j.promfg.2020.03.088
Iversen, O. S., Smith, R. C., & Dindler, C. (2018). From Computational Thinking to Computational Empowerment: A 21 st Century PD Agenda. https://doi.org/10.1145/3210586.3210592
Iwata, M., Laru, J., & Mäkitalo, K. (2020). Designing problem-based learning to develop computational thinking in the context of K-12 maker education. CEUR Workshop Proceedings, 2755, 103–106.
Karmawan, P., & Djamilah, W. (2024). STEM: Its Potential in Developing Students’ Computational Thinking. KnE Social Sciences, 1074–1083. https://doi.org/10.18502/kss.v9i13.16033
Kwon, K., Ottenbreit-Leftwich, A. T., Brush, T. A., Jeon, M., & Yan, G. (2021). Integration of problem-based learning in elementary computer science education: effects on computational thinking and attitudes. Educational Technology Research and Development, 0123456789. https://doi.org/10.1007/s11423-021-10034-3
Lapa-Asto, U., Tirado-Mendoza, G., & Roman-Gonzalez, A. (2019). Impact of Formative Research on Engineering students. 2019 IEEE World Conference on Engineering Education (EDUNINE).
Llulluy-Nuñez, D., Luis Neglia, F. V., Vilchez-Sandoval, J., Sotomayor-Beltrán, C., Andrade-Arenas, L., & Meneses-Claudio, B. (2021). The impact of the work of junior researchers and research professors on the improvement of the research competences of Engineering students at a University in North Lima. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, 2021-July. https://doi.org/10.18687/LACCEI2021.1.1.371
López, Y., Andrea, N., & Zuluaga, T. (2017). The research seedlings. An innovative alternative in the Colombian education system. Revista Universitaria Ruta, 19, 31–47.
Makeblock. (2022). My Blocks Category. https://www.mblock.cc/doc/en/block-reference/DIY.html
Molina, Á., Adamuz, N., & Bracho, R. (2020). La resolución de problemas basada en el método de Polya usando el pensamiento computacional y Scratch con estudiantes de Educación Secundaria. Handbook of Educational Psychology, 287–303. https://doi.org/10.17811/rifie.49.1.2020.83-90
Neo, C. H., Wong, J. K., Chai, V. C., Chua, Y. L., & Hoh, Y. H. (2021a). Computational Thinking in Solving Engineering Problems – A Conceptual Model Definition of Computational Thinking. 11(1), 24–31. https://doi.org/10.37134/ajatel.vol11.2.3.2021
Neo, C. H., Wong, J. K., Chai, V. C., Chua, Y. L., & Hoh, Y. H. (2021b). Computational Thinking in Solving Engineering Problems – A Conceptual Model Definition of Computational Thinking. 11(1), 24–31. https://doi.org/10.37134/ajatel.vol11.2.3.2021
Paredes-Proaño, F. J., & Moreta-Herrera, R. (2020). Actitudes hacia la investigación y autorregulación del aprendizaje en los estudiantes universitarios. CienciAmérica, 9(3), 11–26. https://doi.org/10.33210/ca.v9i3.263
Paucar, R., Jara, N., Paucar, H., & Cruz, V. (2019). Assessment of Computational Thinking in regular basic education: Case I.E.T.P. “josé Obrero.” Proceedings of the 2019 IEEE 26th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2019. https://doi.org/10.1109/INTERCON.2019.8853613
Paucar-Curasma, R., Cerna-Ruiz, L. P., Acra-Despradel, C., Villalba-Condori, K. O., Massa-Palacios, L. A., Olivera-Chura, A., & Esteban-Robladillo, I. (2023). Development of Computational Thinking through STEM Activities for the Promotion of Gender Equality. Sustainability (Switzerland), 15(16), 1–19. https://doi.org/10.3390/su151612335
Paucar-Curasma, R., Villalba-Condori, K. O., Mamani-Calcina, J., Rondon, D., Berrios-Espezúa, M. G., & Acra-Despradel, C. (2023). Use of Technological Resources for the Development of Computational Thinking Following the Steps of Solving Problems in Engineering Students Recently Entering College. Education Sciences, 13(3), 279. https://doi.org/10.3390/educsci13030279
Paucar-Curasma, R., Villalba-Condori, K. O., Viterbo, S. C. F., Nolan, J. J., Florentino, U. T. R., & Rondon, D. (2022). Fomento del pensamiento computacional a través de la resolución de problemas en estudiantes de ingeniería de reciente ingreso en una universidad pública de la región andina del Perú. RISTI - Revista Ibérica de Sistemas e Tecnologias de Informação, 48, 23–40. https://doi.org/10.17013/risti.48.23-40
Pinto, A. R., & Cortés, O. F. (2017). Qué piensan los estudiantes universitarios frente a la formación investigativa. https://doi.org/10.4995/redu.2017.6059
Pluhár, Z., & Torma, H. (2019). Introduction to Computational Thinking for University Students: Vol. 11913 LNCS (P. S.N. & D. V., Eds.; pp. 200–209). Springer. https://doi.org/10.1007/978-3-030-33759-9_16
Polya, G. (1945). How to Solve It (2da ed.). Princeton University Press, Doubleday Anchor Books.
Pólya, G. (1957). How to Solve (U. P. B. Ltd. London, Ed.; 2nd ed.).
Restrepo Gómez, B. (2017). Conceptos y Aplicaciones de la Investigación Formativa, y Criterios para Evaluar la Investigación científica en sentido estricto. https://www.epn.edu.ec/wp-content/uploads/2017/03/Investigaci%C3%B3n-Formativa-Colombia.pdf
Rojas, H., Méndez, R., & Rodríguez, Á. (2012). Índice de actitud hacia la investigación en estudiantes de nivel de pregrado. Entramado, 8(2), 216–229.
Rojas-Betancur, M., & Méndez-Villamizar, R. (2013). Cómo enseñar a investigar. Un reto para la pedagogía universitaria. In Educ. Educ (Vol. 16, Issue 1).
Romero, M., Lepage, A., & Lille, B. (2017). Computational thinking development through creative programming in higher education. International Journal of Educational Technology in Higher Education, 14(1). https://doi.org/10.1186/s41239-017-0080-z
Rubio, L. (2019). Nivel de satisfacción de uso en tecnología educativa para la apropiación de conceptos científicos en educación media. Universidad Cuauhtémoc Aguascalientes.
Suárez, A., García, D., Martínez, P. A., & Martos, J. (2018). Contribución de la robótica educativa en la adquisición de conocimientos de matemáticas en la Educación Primaria. 30, 9–20.
Svarre, T., & Burri, S. (2019). Problem based learning: A facilitator of computational thinking. Proceedings of the European Conference on E-Learning, ECEL, 2019-Novem, 260–267. https://doi.org/10.34190/EEL.19.150
Weese, J. L. (2016). Mixed methods for the assessment and incorporation of computational thinking in K-12 and higher education. 279–280. https://doi.org/10.1145/2960310.2960347
Yasar, O. (2018). Computational Thinking , Redefined. Proceedings of Society for Information Technology & Teacher Education International Conference, 72–88.
Zhou, X., & Chen, L. (2018). Computational thinking of the university computer course teaching system. Journal of Advanced Oxidation Technologies, 21(2). https://doi.org/10.26802/jaots.2018.09320
Zúñiga-Cueva, J., Vidal-Duarte, E., & Padrón Alvarez, A. (2021). Methodological Strategy for the Development of Research Skills in Engineering Students: A Proposal and its Results. Proceedings of the International Conference on Industrial Engineering and Operations Management, 2525–2536.
Downloads
Published
How to Cite
Issue
Section
License
Those authors who publish in this journal accept the following terms:
- Authors will keep the moral right of the work and they will transfer the commercial rights.