The Revolution in Visual Creation

Generative Artificial Intelligence




Artificial intelligence, Photography, Midjourney, Visual, Social Networks


The integration of artificial intelligence (AI) in audiovisual creation is redefining the limits between human creativity and technological potential and its use is widespread on social networks.

This research will review the technical background and aims to analyze the application of artificial intelligence in the different stages of visual production, where it will be studied whether the communication professional can take advantage of their knowledge to get greater performance from these tools.

The conclusions determine that artificial intelligence is involved in the emergence of new forms of artistic and communicative expression.


Download data is not yet available.


Adams, A. (1942). National Archives.

Arana Arrieta, E., Mimenza Castillo, L. y Narbaiza Amillategi, B. (2020). Pandemia, consumo audiovisual y tendencias de futuro en comunicación. Revista de Comunicación y Salud, 10(2), 149–183. DOI:

Boden, M. A. y Edmonds, E. A. (2009). What is generative art? Digital Creativity, 20(1–2), 21–46. DOI:

Brisco, R., Hay, L. y Dhami, S. (2023). Exploring the role of text-to-image AI in concept generation. Proceedings of the Design Society, 3, 1835–1844. DOI:

Chen, L., Wang, P., Dong, H., Shi, F., Han, J., Guo, Y., Childs, P. R. N., Xiao, J. y Wu, C. (2019). An artificial intelligence based data-driven approach for design ideation. Journal of Visual Communication and Image Representation, 61, 10-22. DOI:

Cobb, P. J. (2023). Large Language Models and Generative AI, Oh My! Advances in Archaeological Practice, 11, 363–369). Cambridge University Press. DOI:

Elharrouss, O., Almaadeed, N., Al-Maadeed, S. y Akbari, Y. (2020). Image Inpainting: A Review. Neural Processing Letters, 51, 2007–2028. Springer. DOI:

Evans, Z., Carr, C., Taylor, J., Hawley, S. H. y Pons, J. (7 febrero 2024). Fast Timing-Conditioned Latent Audio Diffusion. Arxiv. Cornell University.

Figoli, F. A., Mattioli, F. y Rampino, L. (2022). AI in the design process: training the human-AI collaboration. Proceedings of the 24th International Conference on Engineering and Product Design Education 2022. The design society. DOI:

Forrester Consulting (5 octubre 2017). The Machine on your Team: New study shows how marketers are adapting in the Age of AI.

Fu, T.-J., Hu, W., Du, X., Wang, W. Y., Yang, Y. y Gan, Z. (2023). Guiding Instruction-based Image Editing via Multimodal Large Language Models. Arxiv. Cornell University.

Gatys, L. A., Ecker, A. S. y Bethge, M. (2016). Image Style Transfer Using Convolutional Neural Networks. Computer Vision Foundation. cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf DOI:

Jayanthiladevi, A., Raj, A. G., Narmadha, R., Chandran, S., Shaju, S. y Krishna Prasad, K. (2020). AI in Video Analysis, Production and Streaming Delivery. Journal of Physics: Conference Series, 1712(1). DOI:

Son, J.-W., Han, M.-H. y Kim, S.-J. (2019). Artificial Intelligence-Based Video Content Generation. Electronics and Telecommunications Trends.

Crowson, K., Biderman, S., Kornis, D. y Stander, D. (2023). VQGAN-CLIP: Open Domain Image Generation and Editing with Natural Language Guidance. Arxiv. Cornell University. DOI:

Lee, S. (2023). Transforming Text into Video: A Proposed Methodology for Video Production Using the VQGAN-CLIP Image Generative AI Model. International Journal of Advanced Culture Technology, 11(3), 225–230.

Liu, V. y Chilton, L. B. (2022, April 29). Design Guidelines for Prompt Engineering Text-to-Image Generative Models. Conference on Human Factors in Computing Systems - Proceedings. DOI:

López, C. E., Miller, S. R. y Tucker, C. S. (2019). Exploring biases between human and machine generated designs. Journal of Mechanical Design, Transactions of the ASME, 141(2). DOI:

Mirowski, P. W., Mathewson, K. W., Pittman, J. y Evans, R. (2023). Writing Screenplays and Theatre Scripts with Language Models: Evaluation by Industry Professionals. CHI Conference on Human Factors in Computing Systems. DOI:

Molina-Siles, P. y Giménez Ribera, M. (2023). Inteligencia artificial y creatividad para la generación de imágenes arquitectónicas a partir de descripciones textuales en Midjourney. Emulando a Louis I. Kahn. EGA Expresión Gráfica Arquitectónica, 28(49), 238–251. doi: 10.4995/ega.2023.19294. DOI:

Momot, I. (2022). Artificial Intelligence in Filmmaking Process Future Scenarios. [Bachelor’s thesis].

Nightingale, S. J. y Farid, H. (2022). AI-synthesized faces are indistinguishable from real faces and more trustworthy. Proceedings of the National Academy of Sciences of the United States of America, 119(8). DOI:

Oppenlaender, J. (2022). The Creativity of Text-to-Image Generation. ACM International Conference Proceeding Series, 192–202. DOI:

Oppenlaender, J. (2023). A taxonomy of prompt modifiers for text-to-image generation. Behaviour and Information Technology. DOI:

Parr, M. (1997). Martin Parr's official website.

Rogers, A., Kovaleva, O. y Rumshisky, A. (2020). A Primer in BERTology: What we know about how BERT works. Arxiv. Cornell University. DOI:

Schetinger, V., Di Bartolomeo, S., El‐Assady, M., McNutt, A., Miller, M., Passos, J. P. A. y Adams, J. L. (2023). Doom or Deliciousness: Challenges and Opportunities for Visualization in the Age of Generative Models. Computer Graphics Forum, 42(3), 423–435. 10.1111/CGF.14841 DOI:

Sosa, R. y Gero, J. S. (2016). Multi-dimensional creativity: A computational perspective. International Journal of Design Creativity and Innovation, 4(1), 26–50. 10.1080/21650349.2015.1026941 DOI:

Steinfeld, K. (2023). Clever little tricks: A socio-technical history of text-to-image generative models. International Journal of Architectural Computing, 21(2), 211–241. 14780771231168230 DOI:

Wang, X., Li, Y., Zhang, H. y Shan, Y. (2021). Towards Real-World Blind Face Restoration with Generative Facial Prior. Arxiv. Cornell University. DOI:

Zhang, C. y Peng, Y. (2018). Stacking VAE and GAN for Context-aware Text-to-Image Generation. 2018 IEEE 4th International Conference on Multimedia Big Data, BigMM 2018. DOI:

Zhang, L., Chen, Q., Hu, B. y Jiang, S. (2020). Text-Guided Neural Image Inpainting. MM 2020 - Proceedings of the 28th ACM International Conference on Multimedia, 1302–1310. DOI:



How to Cite

Casas Arias, M., Priego Díaz, A., & Lara-Martínez, M. (2024). The Revolution in Visual Creation: Generative Artificial Intelligence. VISUAL REVIEW. International Visual Culture Review Revista Internacional De Cultura Visual, 16(4), 227–244.



Research articles