LoRaWAN Reliability Improvement Using Calibration of RF Planning and Redundancy

Field Results for Din Flood Alarm System

Authors

  • Johnny J Mafra Jr Fitec
  • Diogo Carneiro Ribeiro Bueno Martins Cemig

DOI:

https://doi.org/10.62161/sauc.v11.6007

Keywords:

LoRaWAN, Reliability, Availability, Flood Alarm, Site Survey, Sniffer, RF Simulation

Abstract

Brazil reached an all-time high of 118 dams in emergency in 2023, which warranted the development of an alarm system. Since LoRaWAN lacks reliability, mainly regarding downlink messages, this work presents a solution to take the availability to the highest levels. Alarms were 100% delivered within 5 minutes and FUOTA transmitted a firmware split into thousands of fragments reliably. It is also presented an approach to calibrate the RF simulation to make it fit better with the measurements. This took the availability from 77% to 91%. For SNR above -10 dB the availability is as good as 95%.

Downloads

Download data is not yet available.

Global Statistics ℹ️

Cumulative totals since publication
9
Views
7
Downloads
16
Total
Downloads by format:
PDF (Español (España)) 2 PDF 5

References

Agência Nacional de Águas e Saneamento Básico. (2024). Relatório de segurança de barragens 2023. https://www.snisb.gov.br/portal-snisb/api/file/download/714/4/rsb_2023_2024_06_27_11_01_28.pdf

Agência Nacional de Mineração. (2024, septiembre). Report mensal – Barragens de mineração. https://www.gov.br/anm/pt-br/assuntos/barragens/boletim-de-barragens-de-mineracao/boletim-mensal-setembro-2024.pdf/view

ChirpStack. (2025). Adaptive data-rate (ADR). https://www.chirpstack.io/docs/chirpstack/features/adaptive-data-rate.html

Choi, R., Lee, S., & Lee, S. (2020). Reliability improvement of LoRa with ARQ and relay node. Symmetry, 12(4), 552. https://doi.org/10.3390/sym12040552

Coutaud, U., Heusse, M., & Tourancheau, B. (2020). High reliability in LoRaWAN. In 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE. https://doi.org/10.1109/PIMRC48278.2020.9217220

Horta, A., & Damas, P. (2022). Design, tecnologia e segurança: Impactos da morfologia de um dispositivo individual de notificação sobre a percepção de usuários em zonas de risco de rompimento de barragens. Revista Design & Tecnologia, 12(24), 113-133. https://doi.org/10.23972/det2022iss24pp01-10

International Telecommunication Union. (2021). Recommendation ITU-R P.1812-6: A path-specific propagation prediction method for point-to-area terrestrial services in the frequency range 30 MHz to 6 000 MHz. https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.1812-6-202109-S!!PDF-E.pdf

Karthikeyan, R., Duraiarasu, E., Ganesh, K., & Bhagyalakshmi, L. (2024). LoRa and IoT based device for disaster and fleet management. International Research Journal on Advanced Science Hub, 6(5), 88–96. https://doi.org/10.47392/IRJASH.2024.016

Leitão, C. M., Strobel, F. de, Almeida, G. de, Mafra Júnior, J. J., Oliveira, J. J., & Xavier, R. C. (2022). Solução AMI para áreas rurais dispersas e áreas urbanas com dificuldades de recepção de sinais utilizando tecnologia LoRa [Conferência]. SENDI 2022 – Seminário Nacional de Distribuição de Energia Elétrica.

LoRa Alliance. (2017). LoRaWAN™ regional parameters 1.1. https://lora-alliance.org/wp-content/uploads/2020/11/lorawan-regional-parameters-v1.1ra.pdf

LoRa Alliance. (2022). LoRaWAN fragmented data block transport specification TS004-2.0.0. https://resources.lora-alliance.org/technical-specifications/ts004-2-0-0-fragmented-data-block-transport

Mafra, J. J., Jr., Hosami, M., Freitas, L., Martinelli, M., & Almeida, A. (2015). Hybrid communication module – Motivations, requirements, challenges and implementations. In IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LA) (pp. 25–29). IEEE. https://doi.org/10.1109/ISGT-LA.2015.7381124

Rayess, J., Khawam, K., Lahoud, S., Helou, M. E., & Martin, S. (2023). Study of LoRaWAN networks reliability. In 2023 6th Conference on Cloud and Internet of Things (CIoT) (pp. 200–205). IEEE. https://doi.org/10.1109/CIoT57267.2023.10084880

Sciullo, L., Trotta, A., & Di Felice, M. (2020). Design and performance evaluation of a LoRa-based mobile emergency management system (LOCATE). Ad Hoc Networks, 96, 101993. https://doi.org/10.1016/j.adhoc.2019.101993

Silva, J. de C., Rodrigues, J. J. P. C., Alberti, A. M., Šolić, P., & Aquino, A. L. L. (2017). LoRaWAN – A low power WAN protocol for Internet of Things: A review and opportunities [Conferência]. 2nd International Multidisciplinary Conference on Computer and Energy Science (SpliTech), Split, Croatia.

Sisinni, E., Carvalho, D. F., Ferrari, P., Flammini, A., & Gidlund, M. (2022). Adding redundancy to LoRaWAN for emergency communications at the factory floor. IEEE Transactions on Industrial Informatics, 18(10), 7332–7340. https://doi.org/10.1109/TII.2021.3124054

The European Parliament and the Council of the European Union. (2024). Regulation (EU) 2024/2847 of 23 October 2024 on horizontal cybersecurity requirements for products with digital elements and amending Regulations (EU) No 168/2013 and (EU) No 2019/1020 and Directive (EU) 2020/1828 (Cyber Resilience Act). Official Journal of the European Union, L series. http://data.europa.eu/eli/reg/2024/2847/oj

Zhang, H., Zhang, R., & Sun, J. (2025). Developing real-time IoT-based public safety alert and emergency response systems. Scientific Reports, 15, 13465. https://doi.org/10.1038/s41598-025-13465-7

Published

2025-11-28

How to Cite

Mafra Jr, J. J., & Carneiro Ribeiro Bueno Martins, D. (2025). LoRaWAN Reliability Improvement Using Calibration of RF Planning and Redundancy: Field Results for Din Flood Alarm System. Street Art & Urban Creativity, 11(7), 159–175. https://doi.org/10.62161/sauc.v11.6007