Artificial Intelligence Applied to the Analysis of Hate Speech

Trump´s and Biden During the Capitol Attack in Washington D.C.

Authors

DOI:

https://doi.org/10.62161/sauc.v11.5813

Keywords:

Politics, Capitol Storming, Hate, Histogram, Artificial Intelligence, Trump, Biden

Abstract

In January 2021, during a rally in Washington, D.C., Donald Trump claimed electoral fraud and urged citizens to go to the Capitol. Hours later, dozens stormed the building, leaving four dead and 52 arrested. Afterwards, both Joe Biden and Trump released audiovisual messages. This study uses AI tools to qualitatively analyse those speeches via the ONEIA application. A quantitative analysis with OpenAI also assessed the videos' aesthetic treatment. Despite major content differences in the speeches, the audiovisual style showed high similarity, supported by statistical analysis of frame histograms.

Downloads

Download data is not yet available.

Global Statistics ℹ️

Cumulative totals since publication
18
Views
13
Downloads
31
Total
Downloads by format:
PDF (Español (España)) 6 PDF 7

References

Abrar, M., Jabeen, S. and Abbas. S. (2021). Socio-Economic Effects of Customer Knowledge, Political Support, and Innovation on the Growth of Islamic Banking System; Case Study of Pakistan. Research Square, 22. https://doi.org/10.21203/rs.3.rs-311357/v1

Acharya, T. and Ray, A. K. (2005). Image Processing: Principles and Applications. New York: Wiley-Interscience, (pp. 36-37). https://doi.org/10.1002/0471745790.ch2

Adam, A., Rivlin, E. and Shimshoni, I. (2006). Robust Fragments-based Tracking using the Integral Histogram, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), New York, NY, USA, pp. 798-805, https://doi.org/10.1109/CVPR.2006.256

Alatawi, H. S., Alhothali, A. M., & Moria, K. M. (2021). Detecting white supremacist hate speech using domain specific word embedding with deep learning and BERT. IEEE Access, 9, 106363-106374. https://ieeexplore.ieee.org/document/9497095/

Angulo, J. and Serra, J. (2005). Segmentación de Imágenes en Color utilizando Histogramas Bi–Variables en Espacios Color Polares Luminancia/Saturación/Matiz. Computación y Sistemas, 8(4).

Atkinson, G. (2014). Shear rate normalization is not essential for removing the dependency of flow-mediated dilation on baseline artery diameter: past research revisited. Physiological Measurement, 35(9), 1825–1835. https://doi.org/10.1088/0967-3334/35/9/1825

Badjatiya, P., Gupta, S., Gupta, M., & Varma, V. (2017). Deep learning for hate speech detection in tweets. In Proceedings of the 26th international conference on World Wide Web companion (pp. 759-760).

Barrientos, A., Caldevila, D. and Vargas, J. J. (2019). El protocolo, la puesta en escena y la persuasión en los debates políticos televisados. Revista de Marketing Aplicado, 23(3), 17-27. https://doi.org/10.17979/redma.2019.23.3.5872

Behar Guitiérrez, R. and Grima i Cintas, P. (2013). El histograma como un instrumento para la comprensión de las funciones de densidad de probabilidad. Probabilidad Condicionada: Revista de didáctica de la Estadística, 2, 229-235. http://hdl.handle.net/2117/19754

Benjamin, W. (2008). The work of art in the age of mechanical reproduction (J. A. Underwood, Trad.). Harlow, Inglaterra: Penguin Books.

Benoit, W. L., Hansen, G. J. and Verser, Rebecca M. (2003). A meta-analysis of the effects of viewing U.S. presidential debates. Communication Monographs, 70(4), 335-350. https://doi.org/10.1080/0363775032000179133

Bhattacharya, A., Chakrabarti, T., Basu, S., Knott, A., Pedreschi, D., Chatila, R., ... & Biecek, P. (2024). Towards a crowdsourced framework for online hate speech moderation-a case study in the Indian political scenario. In Companion Publication of the 16th ACM Web Science Conference (pp. 75-84). https://doi.org/10.1145/3630744.3663607

Bunde, E. (2021). AI-assisted and explainable hate speech detection for social media moderators – A design science approach. Proceedings of the 2021 Annual Hawaii International Conference on System Sciences (HICSS) (pp. 1264–1274). https://doi.org/10.24251/HICSS.2021.154

Cerdán Martínez, V., & Padilla Castillo, G. (2019). Historia del «fake» audiovisual: «deepfake» y la mujer en un imaginario falsificado y perverso. Historia y comunicacion social, 24(2), 505–520. https://doi.org/10.5209/hics.66293

Chace, S. (2021). “Unlocking Us”: Analyzing the US election and its aftermath. Leadership (London), 17(3), 365–375. https://doi.org/10.1177/17427150211003002

Chao, A. F., Wang, C. S., Li, B. Y., & Chen, H. Y. (2024). From Hate to Harmony: Leveraging Large Language Models for Safer Speech in Times of COVID-19 Crisis. Heliyon. https://doi.org/10.1016/j.heliyon.2024.e35468

Chen, H., Li, C., Zheng, L., Lu, W., Li, W. and Wei, W. (2021). A machine learning‐based survival prediction model of high grade glioma by integration of clinical and dose‐volume histogram parameters, Cancer Medicine, 10(8), 2774-2786. https://doi.org/10.1002/cam4.3838

Coltuc, D., Bolon, P. and Chassery, J. (2006). Exact histogram specification. IEEE Transactions on Image Processing, 15(5), 1143-1152. https://doi.org/10.1109/TIP.2005.864170

Dou, W., Ren, Y., Chen, Y., Ruan, S., Bloyet, D. and Constrans, J. M. (2005). Histogram-based generation method of membership function for extracting features of brain tissues on MRI images. L. Wang, Y. Jin (Eds.), FSKD, LNAI, 3613, Springer-Verlag, Berlin (pp. 189-194).

Durschlag, J. (2021, enero 8). Trump calls for healing, smooth transition after «heinous attack» on Capitol. Fox News. https://www.foxnews.com/us/trump-calls-for-healing-smooth-transition-after-heinous-attack-on-capitol

Fell, G., Redd, R. A., Vanderbeek, A. M., Rahman, R., Louv, B., McDunn, J., Arfè, A., Alexander, B. M., Ventz, S., & Trippa, L. (2021). KMDATA: a curated database of reconstructed individual patient-level data from 153 oncology clinical trials. Database: The Journal of Biological Databases and Curation, 2021. https://doi.org/10.1093/database/baab037

Fenza, G., Loia, V., Stanzione, C., & Di Gisi, M. (2024). Robustness of models addressing Information Disorder: A comprehensive review and benchmarking study. Neurocomputing, 127951. https://doi.org/10.1016/j.neucom.2024.127951

Flores, M. J., Robayo Jácome, D. J. and Saa Escobar, D. A. (2015). Histograma del gradiente con múltiples orientaciones (hog-mo) detección de personas. Investigación y Desarrollo, 12, 2(5). https://doi.org/10.14483/2322939X.10991

Fuchs, C. (2021). How Did Donald Trump incite a coup attempt? tripleC Communication Capitalism & Critique Open Access Journal for a Global Sustainable Information Society, 19(1), 246–251. https://doi.org/10.31269/triplec.v19i1.1239

Galfione, M. V. (2014). Estética y política: el debate contemporáneo en torno a las formas de la representación. Trans/Form/Ação, 37(1), 223–246. https://doi.org/10.1590/S0101-31732014000100012

Gandhi, A., Ahir, P., Adhvaryu, K., Shah, P., Lohiya, R., Cambria, E., Poria, S., & Hussain, A. (2024). Hate speechdetection: A comprehensive review of recent works. Expert Systems, 41(8), e13562. https://doi.org/10.1111/exsy.1356224

Géraud, T., Strub, P. Y. and Darbon J. (2001). Color image segmentation, Proc. of IEEE International Conference on lmage Processing (ICIP'01), IEEE, 3, 70–73.

Glasbey, C. A. (1993). An Analysis of Histogram-Based Thresholding Algorithms. CVGIP: Graphical Models and Image Processing, 55(6), 532-537. https://doi.org/10.1006/cgip.1993.1040

Gongane, V. U., Munot, M. V., & Anuse, A. D. (2022). Detection and moderation of detrimental content on social media platforms: current status and future directions. Social Network Analysis and Mining, 12(1), 129. https://doi.org/10.1007/s13278-022-00951-3

Gongane, V. U., Munot, M. V., & Anuse, A. D. (2024). A survey of explainable ai techniques for detection of fake news and hate speech on social media platforms. Journal of Computational Social Science, 7, 1-37. https://doi.org/10.1007/s42001-024-00248-9

Grover, P., Kumar, A., Gupta, S. & Modgil, S. (2021). Influence of political leaders on sustainable development goals – insights from twitter. Journal of Enterprise Information Management, 34(6), 1893-1916. https://doi.org/10.1108/JEIM-07-2020-0304

Hallin, D. C. and Mancini, P. (2004). Americanization, globalization, and secularization: understanding the convergence of media systems and political communication. En F. Esser y B. Pfet- sch (eds.), Comparing Political Communication. Theories, Cases, and Challenges (pp. 25-44). Nueva York: Cambridge University Press.

Hemphill, M. (1996). A note on adults’ color-emotion associations. The Journal of Genetic Psychology, 157(3), 275–280. https://doi.org/10.1080/00221325.1996.9914865

Hossain, M. S., & Muhammad, G. (2019). Emotion recognition using deep learning approach from audio–visual emotional big data. Information Fusion, 49, 69-78 https://doi.org/10.1016/j.inffus.2018.09.008

Karmakar, D., Sarkar, R. & Datta, M. (2021). Colour band fusion and region enhancement of spectral image using multivariate histogram, International Journal of Image and Data Fusion, 12, 64-82. https://doi.org/10.1080/19479832.2020.1870578

Karni, A. (2021, enero 11). On the way out, Melania trump denounces attacks on her as “shameful”. The New York Times. https://www.nytimes.com/2021/01/11/us/politics/melania-trump-statement-capitol-riot.html

Khan, W. Z., Kibriya, H., & Siddiqa, A. (2024). Towards Safer Online Communities: Deep Learning and Explainable Ai for Hate Speech Detection and Classification. Computers and Electrical Engineering, 116, 109153. https://doi.org/10.1016/j.compeleceng.2024.109153

Koeing, B., Lacey, D., & Richards, G., (2012). Video frame comparisons in digital video authenticity analyses. Journal of Forensic IdentificationVolume 62(2), 165 – 182.

Kumar, K., Birla, L. & Rao, S. K. (2018). A robust unsupervised pattern discovery and clustering of speech signals. Pattern Recognition Letters, 116, 254-261. https://doi.org/10.1016/j.patrec.2018.10.035

Kumar, P., Malik, S., & Raman, B. (2024). Interpretable multimodal emotion recognition using hybrid fusion of speech and image data. Multimedia Tools and Applications, 83(10), 28373-28394. https://doi.org/10.1007/s11042-023-16443-1

Kurugollu, F., Sankur, B. & Harmanci, A. (2001). Color image segmentation using histogram multithresholding and fusion, Image and Vison Computing, 19(13), 915–928. https://doi.org/10.1016/S0262-8856(01)00052-X

Lee, E., Rustam, F., Washington, P. B., El Barakaz, F., Aljedaani, W., & Ashraf, I. (2022). https://doi.org/10.1016/S0262-8856(01)00052-X el. IEEE Access, 10, 9717-9728.

Leekha, R., Simek, O., & Dagli, C. (2024). War of Words: Harnessing the Potential of Large Language Models and Retrieval Augmented Generation to Classify, Counter and Diffuse Hate Speech. In The International FLAIRS Conference Proceedings (Vol. 37). https://doi.org/10.32473/flairs.37.1.135484

Leslie, E. (2019). Anti-fascism, anti-art, doubt and despair. Third Text, 33(3), 293–313. https://doi.org/10.1080/09528822.2019.1627053

Lu, D., Li., Y., L., H. & Pillai, J. J. (2021). Histogram-based analysis of cerebral blood flow using arterial spin labeling MRI in de novo brain gliomas: relationship to histopathologic grade and molecular markers, Functional Neuroradiology, 63, 751-760. https://doi.org/10.1007/s00234-020-02625-3

Mangan, D., & Breuninger, K. (2021, enero 21). Trump hires impeachment lawyer, McConnell wants Senate trial in February for Capitol riot incitement charge. CNBC. https://www.cnbc.com/2021/01/21/trump-not-prepared-for-senate-impeachment-trial-for-capitol-riots.html

Matthews, D. (2021, enero 6). A Trump supporter called C-SPAN in tears to ask if her president had lied to her. Vox.

https://web.archive.org/web/20210107052227/https://www.vox.com/2021/1/6/22218031/trump-supporter-cspan-president-lied

Meier, B. P., Robinson, M. D., Crawford, L. E., & Ahlvers, W. J. (2007). When «light» and «dark» thoughts become light and dark responses: affect biases brightness judgments. Emotion (Washington, D.C.), 7(2), 366–376. https://doi.org/10.1037/1528-3542.7.2.366

Modha, S., Majumder, P., Mandl, T., & Mandalia, C. (2020). Detecting and visualizing hate speech in social media: A cyber watchdog for surveillance. Expert Systems with Applications, 161, 113725 https://doi.org/10.1016/j.eswa.2020.113725

Morris, D. S. (2017). Twitter Versus the Traditional Media: A Survey Experiment Comparing Public Perceptions of Campaign Messages in the 2016 U.S. Presidential Election. Social Science Computer Review, 36(4). https://doi.org/10.1177/0894439317721441

Mozafari, M., Farahbakhsh, R., & Crespi, N. (2020). Hate speech detection and racial bias mitigation in social media based on BERT model. PloS one, 15(8), e0237861. https://doi.org/10.1371/journal.pone.0237861

Oliveira, A. S., Cecote, T. C., Silva, P. H., Gertrudes, J. C., Freitas, V. L., & Luz, E. J. (2023). How Good Is ChatGPT For Detecting Hate Speech In Portuguese?. En Anais do XIV Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana (pp. 94-103). SBC.

Padilla Castillo, G. (2014). La espectacularización del debate electoral: estudio del caso en Estados Unidos. Vivat Academia, (132), 162-180. https://doi.org/10.15178/va.2015.132.162-180

Palakodety, S., KhudaBukhsh, A. R., & Carbonell, J. G. (2020). Voice for the voiceless: Active sampling to detect comments supporting the rohingyas. In Proceedings of the AAAI conference on artificial intelligence 34(1), 454-462. https://doi.org/10.1609/aaai.v34i01.5382

Place, J. A. & Peterson, L. S. (1974). Some visual motifs on film noir. Film Comment, 10(1), 30-35.

Plasser, F. & Plasser, G. (2002). La campaña global. Los nuevos gurúes del marketing político en acción. Buenos Aires: Temas Grupo Editorial.

Qin, K., Xu, K., Liu, F. & Li, D. (2011). Image segmentation based on histogram analysis utilizing the cloud model. Computers & Mathematics with Applications, 62(7), 2824-2833. https://doi.org/10.1016/j.camwa.2011.07.048

Rai, S. M. (2017). Performance and politics: an approach to symbolic representation. Politics, Groups & Identities, 5(3), 506–511. https://doi.org/10.1080/21565503.2017.1321996

Rasmussen, M. B. (2021). The aestheticisation of late capitalist fascism: Notes for a communist art theory. Third Text, 35(3), 341–354. https://doi.org/10.1080/09528822.2021.1916268

Russ, J. C. (2002). The Image Processing Handbook (pp. 58-60). Washginton: CRC Press.

Saleh, H., Alhothali, A., & Moria, K. (2023). Detection of hate speech using bert and hate speech word embedding with deep model. Applied Artificial Intelligence, 37(1), 2166719. https://doi.org/10.1080/08839514.2023.2166719

Sharma, I., Jain, K., Behl, A., Baabdullah, A., Giannakis, M., & Dwivedi, Y. (2023). Examining the motivations of sharing political deepfake videos: the role of political brand hate and moral consciousness. Internet Research, 33(5), 1727-1749. https://doi.org/10.1108/INTR-07-2022-0563

Simon, S. (2021). Trump’s insurrection and America’s year of living dangerously. Survival, 63(1), 7–16. https://doi.org/10.1080/00396338.2021.1881247

Sullivan, K., & Bradner, E. (2021, enero 6). Joe Biden calls on Trump to «end this siege». CNN. Recuperado de https://edition.cnn.com/videos/politics/2021/01/06/biden-responds-pro-trump-capitol-washington-dc-congress-electoral-college-vpx.cnn

Téllez, N., Muñiz, C. & Ramírez, J. (2010). Función discursiva en los debates televisados. Un estudio transcultural de los debates políticos en México, España y Estados Unidos. Palabra clave, 13(2), 251-270.

Thiago, D. O., Marcelo, A. D., & Gomes, A. (2021). Fighting hate speech, silencing drag queens? artificial intelligence in content moderation and risks to lgbtq voices online. Sexuality & culture, 25(2), 700-732. https://doi.org/10.1007/s12119-020-09790-w

Vafeiadis, M., & Shen, F. (2021). Effects of narratives, frames, and involvement on health message effectiveness. Health Marketing Quarterly, 39(3), 213-229. https://doi.org/10.1080/07359683.2021.1965824

Valdez-Zepeda, A. & Huerta-Franco, D. (2009). Estrategias de comunicación en campañas electorales: El caso de la contienda presidencial de Estados Unidos 2008. Contratexto, 17, 21-32. https://doi.org/10.26439/contratexto2009.n017.792

Villa-Gracia, D., & Cerdán, V. (2020). Evolución de la popularidad de Donald Trump y otros mandatarios internacionales en Google Trends (2016-2019). El profesional de la información, 29(1). https://doi.org/10.3145/epi.2020.ene.12

Walter, D. & Hellström, J. (2021). Government termination in Europe: a sensitivity analysis. West European Politics, 45(3), 591-611. https://doi.org/10.1080/01402382.2021.1880720

Zhao, J., Li, Z.-T. & Feng, B. (2015). A novel two-dimensional histogram modification for reversible data embedding into stereo H.264 video. Multimedia Tools and Applications, 75(10), 5959–5980. https://doi.org/10.1007/s11042-015-2558-9

Zhu, Y., Zhang, P., Haq, E. U., Hui, P., & Tyson, G. (2023). Can chatgpt reproduce human-generated labels? a study of social computing tasks. arXiv preprint arXiv:2304.10145. https://doi.org/10.48550/arXiv.2304.10145

Published

2025-07-01

How to Cite

Giménez Sarmiento, Álvaro, Cerdán Martínez, V., & Villa Gracia, A. D. (2025). Artificial Intelligence Applied to the Analysis of Hate Speech: Trump´s and Biden During the Capitol Attack in Washington D.C. Street Art & Urban Creativity, 11(4), 137–149. https://doi.org/10.62161/sauc.v11.5813

Issue

Section

Research articles