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Efficient parking access is crucial for urban mobility in smart cities. This study 
presents a pilot system predicting public parking occupancy in Valencia, Spain, using 
municipal sensor data. We developed and compared recurrent neural network 
architectures (RNN, LSTM, GRU), achieving accurate forecasts with performance 
variations across locations and times. Explainable AI methods provided model 
interpretability and insights into variable influence. Results indicate that baseline 
recurrent models yield low MAEs, while Bayesian hyperparameter optimisation 
offers only marginal gains, highlighting the practicality of straightforward 
recurrent approaches for urban parking prediction. 
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1. Introduction

he increase in urban density and growing number of vehicles pose significant challenges for 
parking management in large and medium-sized cities such as Valencia. Inefficient search for 
parking spaces increases congestion, unnecessary fuel consumption and pollutant emissions 

(Shoup, 2005). As part of the smart city movement, municipalities are exploring data-driven solutions 
and emerging technologies (Batty et al., 2012). Local councils have developed guides, such as 
Transformative Mobility (2024), to synthesize best practices in parking management for sustainable 
mobility. They have also promoted technological initiatives, such as the Smart Parking project at PCT 
Cartuja (Junta de Andalucía & Telefónica, 2021), which leverage real-time occupancy monitoring 
through cameras and inform users via mobile apps and display panels. 
One of the possible applications is to optimize the use of available parking spaces and improve the 
experience for drivers. 

The city of Valencia has a system that allows the number of available spaces to be monitored in 
real time in a set of public car parks. This information is available on the Valencia City Council's open 
data platform and is displayed on the information panels distributed in different parts of the city, 
helping manage urban mobility more effectively. 

This paper presents a comprehensive evaluation of deep learning algorithms for predicting 
parking availability in Valencia. The proposed models forecast which car parks are likely to have 
spaces available at specific days and times, using historical data, behavioural patterns, and machine 
learning techniques. Their implementation can support more efficient mobility management and 
contribute to broader sustainability and quality-of-life goals in metropolitan areas. 

Building on historical usage data provided by the Valencia City Council, we develop a scalable 
system capable of predicting the availability of public car parks using deep learning methods. The 
study compares the performance of three recurrent neural network (RNN) architectures—basic RNN, 
LSTM, and GRU—in both baseline and optimised forms, the latter obtained through Bayesian 
hyperparameter tuning. To enhance interpretability, a surrogate model is employed to identify the 
variables with the greatest influence on predictions. 

Once the validity of the proposed solution has been verified, the new parking occupancy data 
generated in real time will be integrated to continuously optimize its predictions through automated 
deployments and training. 

This article is organized as follows. Firstly, a review of the state of the art in techniques for 
predicting the availability of parking spaces is carried out in Section 2. Section 3 details the 
methodology followed for the analysis of the data and the application of the prediction models. 
Section 4 analyses and discusses the results obtained in the different models and compares results 
with previous works.  Section 5 applies an AI explainability model to the results obtained. Finally, the 
conclusions and future work are shown in Section 6. 

2. State of the art

The development of systems to predict the availability of parking spaces is part of the evolution of 
smart cities, which aims to optimise urban services through the use of advanced information and 
communication technologies (Batty et al., 2012) and artificial intelligence systems. 

In recent years, various approaches have been explored to predict the availability of parking 
spaces, combining IoT sensors, historical data analysis and artificial intelligence (AI) techniques. AI 
techniques for predicting parking availability leverage a variety of machine learning (ML) and deep 
learning (DL) models to improve accuracy and efficiency. These models use a variety of datasets, 
including historical occupancy rates and contextual factors, to forecast available parking spaces.  

T 
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Different studies demonstrate the potential of time series analysis in urban contexts, including 
mobility from mobile phone data (Calabrese et al, 2011) or data collected from pervasive network 
infrastructure (Zheng et al, 2015). Pozo et al. (2022) developed a predictor of on-street parking in 
Madrid, Spain, exploiting occupancy data collected from smart parking infrastructures and Moreno 
(Moreno Esteban, 2021) conducted an occupancy prediction study for several car parks around train 
stations in the province of Barcelona, showing strong daily cyclic patterns in usage 

Traditional machine learning models have been widely applied to parking availability prediction 
due to their simplicity and interpretability. These models include Decision Trees (DT), Random 
Forests (RF), K-Nearest Neighbors (KNN), and others. Some studies have shown that these simpler 
algorithms often outperform more complex models such as Multilayer Perceptron (MLP) in terms of 
prediction accuracy (Awan et al., 2020; Inam et al., 2022). 

Deep learning models have gained significant attention in recent years due to their ability to learn 
complex patterns in data. Thus, Neural Networks have been used to predict parking space availability 
by learning the relationships between various factors such as time, weather, and traffic conditions. 
For instance, a study using data from the SFpark project in San Francisco demonstrated that Neural 
Networks outperformed other traditional models for time series forecasting like ARIMA and SARIMA 
in terms of mean squared error, especially when exogenous variables such as day type and time of 
day were considered (Sebatli,2023). Neural networks and temporal convolutional networks have 
been employed to capture both spatial and temporal features, leading to improved prediction 
outcomes (Chen et al., 2023; Zhang et al., 2024). 

Much in the same way, architectures based on Recurrent Neural Networks (RNNs) and their 
variants such as Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) and Gated 
Recurrent Units (GRU) (Cho et al., 2014) are well-suited for time series prediction tasks, making them 
a natural choice for parking availability prediction. LSTMs, in particular, have been shown to perform 
well in long-term time series prediction including problems related to parking occupancy prediction 
using historical data and traffic conditions (Barraco et al, 2021; Vieta, 2024; Yuen et al., 2021). 
Likewise, GRUs have been used to model the spatial relationships between parking lots and temporal 
dynamics of parking behaviors (Zhao & Zhang, 2024). 

Despite these advances, several challenges remain. On the one hand, the quality and availability of 
historical and real-time data can be limited or heterogeneous (Zheng et al., 2014). On the other hand, 
the variability associated with contextual factors such as cultural events, changes in public transport 
supply or weather conditions remains difficult to accurately model (Yang et al., 2019). 

The need for interpretability of AI models is another fundamental aspect to analyse when using 
these prediction systems. One effective strategy is the use of surrogate models, simple and inherently 
interpretable approximators (e.g., decision trees or linear regressions) trained to mimic the 
behaviour of a more complex “black-box” model. By analysing the surrogate’s structure or feature 
importances, we gain insight into which inputs drive the original model’s predictions. 

In summary, the literature shows a clear trend towards the use of deep learning techniques to 
solve the problem of predicting parking availability in urban environments. The present work is part 
of this line, evaluating the use of RNN, LSTM and GRU on real data from the city of Valencia, and 
providing a systematic comparison between basic architectures and optimized versions. It also 
incorporates interpretability techniques to improve the understanding and applicability of the results 
in urban mobility management systems. 

In the specific case of Spanish cities, the case of Valencia represents a particularly interesting real 
context, given the availability of public data and the progressive implementation of smart mobility 
systems. 
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3. Methodology

This section describes the methodology followed in the present work. First, the collected data is 
analysed and pre-processed to remove erroneous or missing values. Next, an exploratory analysis of 
the data is performed. Finally, the dataset is used to train a predictive model based on neural 
networks. The following subsections provide a more detailed description of these steps. 

3.1. Data collection and description 

The Valencia City Council, on its open data portal publishes real-time information on the availability 
of spaces in the city's public car parks. In addition, although the history of use of the car parks is not 
published in the open data portal, the city council through the Smart City office stores this 
information. Thus, the information used as the starting point for this work are: 

• CSV file containing parking space data for each lot, covering the period specific to each
facility

• CSV file with the identifier and name of the car parks.
These files contain information on 20 car parks, which are used in the analysis detailed below. For 

clarity of presentation, this paper shows results for only one or two car parks, although the method 
is applied to the entire set. 

3.2. Data preparation 

The file with the information on parking spaces contains 13 million records, corresponding to the 20 
car parks. It is common for large amounts of data to have erroneous, invalid or missing values. 
Therefore, the first step is to carry out an initial inspection and data cleaning. 

The data file provided contains the following columns (table 1): 

Table 1. Dataset information 

name Meaning 

_id Car park id (alphanumeric) 

entityId parking id 

entityType 
indicates that the parking lot is of type 

parking 

availableSpotNumber total number of available parking spaces 

availableSpotPercentage percentage of available seats 

totalSpotNumber total number of parking spaces 

idParking Car park identifier 

recvTime time of data recording 

TimeInstant time when the data is received 

Source: Own elaboration, 2025. 

The dataset undergoes the following processing steps: 
1. All redundant columns or those containing a large amount of missing data are removed, as they

are not used in the analysis, leaving: availableSpotNumber, totalSpotNumber, and idParking.
2. The necessary type conversions are performed: for example, correcting records that refer to

the same parking lot, but have different identifiers due to erroneous registration.
3. Another corrected inconsistency involves records where the total number of parking spaces

varies for the same location.
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4. If there are few erroneous records for a car park, they are corrected, as they are interpreted as 
transmission errors, and if there are many, the data for that car park is discarded.  

Subsequently, a function is defined to display the time range for each car park (see Figure 1), as 
well as the periods with missing data, which are linearly interpolated. Erroneous records are also 
identified, that is, those that availability is greater than the total number of parking spaces or 
availability is negative 

Figure 1. Example of data collected for the car park with ID = 78 – Severo Ochoa 

 

Source: Own elaboration, 2025. 

This data cleansing feature is applied for each car park, and all records associated with each car 
park where there are long periods of missing data are deleted, as imputing such long periods can 
compromise the quality of the results. Those in which there is little or incorrect data are also deleted.  

With the analysis carried out so far, the main problems in the data received are detected:  
- Records of the same car park associated with different identifiers, although it should be the 

same. 

- Records of the same car park where the number of total parking spaces varies. 

- Erroneous registrations (where the number of available spaces is negative or exceeds the 

total number of parking spaces). 

- Records with the data types incorrectly converted. 

Based on the analysis carried out so far, the main issues in the received data are identified: 
- Several records associated with the same time slot, in this case the average of these records 

is calculated. 

- Time slots without records (missing values, NA). Here it is imputed using a weighted average 

between the previous 4 records and that same record, at the same time, in the previous week. 
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- If many missing values appear at the beginning of the series, data will be used when the null

values are significantly reduced, so as not to compromise the result of the predictions, since

imputing long periods can be dangerous.

Applying these corrections for each car park removes records that may contain erroneous data. 
In summary, at the end of this stage, the data is obtained without irregularities: a single piece of 

data per hour from the beginning to the end of the time series. An output file that maintains 3 
variables is obtained: the car park id, the percentage of available spaces in a range between 0 and 100, 
and the time instant to which the record refers. 

3.3. Exploratory data analysis and periodogram 

This stage provides an initial understanding of how the data are distributed, enabling the detection 
of repetitive temporal patterns and the identification of when and how occupancy changes over time. 
To this end, two techniques are applied: exploratory data analysis (EDA) and a periodogram to study 
the data in the frequency domain. 

In the EDA, the percentage of available parking spaces (ranging from 0 to 100) is calculated for 
each car park, with the data aggregated by day of the month, day of the week, and month of the year. 

As an example, the results of the exploratory data analysis for two representative car parks is 
presented. 

For car park ID 6 (Figure 2), availability decreases during weekends, suggesting use for shopping 
and leisure activities, while an increase in August reflects reduced demand during the holiday season. 
In contrast, car park ID 7 shows increased availability both at weekends and in August, indicating 
predominant use during working hours, with higher occupancy on weekdays and lower demand 
during periods of reduced professional activity. 

Figure 2: EDA analysis for 2 car parks  

Source: Own elaboration, 2025. 

Although exploratory data analysis provides valuable insights, it may be insufficient for detecting 
periodic behaviours. To address this, a periodogram was computed (Figure 6), transforming the time-
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domain data into the frequency domain to assess the significance of each frequency component. Each 
bar on the chart shows which frequency is most important in the time series. If the bar is high, it 
means that this frequency stands out and can indicate that there are patterns that are repeated, every 
day, every noon, etc. 

For car park ID 6, notable cycles occur at 24, 28, and 12 hours, potentially corresponding to daily 
routines, irregular patterns such as part-time work or school schedules, and work-shift transitions, 
respectively. 

Figure 3: Periodogram for parking with ID = 6 

Source: Own elaboration, 2025. 

3.4. Dataset split and feature engineering 

The cleaned and pre-processed dataset is used to train a predictive model for car park occupancy. 
The target variable is the percentage of available parking spaces, rescaled from 0–100 to 0–1 to 
improve convergence and accelerate training. Three categorical variables—day of the week, month, 
and weekend indicator—are incorporated to provide contextual information. These categorical 
features are encoded using embedding layers, which enabled the model to learn dense vector 
representations and capture relationships between categories. 

Recurrent Neural Networks (RNNs) are selected due to their ability to process sequential data and 
leverage past information to predict subsequent values. The model input consisted of 24-hour time 
windows, which were determined from the periodic patterns identified during the exploratory data 
analysis. Each window contained the 24 hours preceding a given time and was used to predict 
availability at that time. 

The hold-out method is applied to divide the dataset into training (70%), validation (15%), and 
test (15%) subsets. The test set covers an identical time range for all car parks to ensure performance 
comparability, while the training and validation subsets were individually adjusted according to each 
car park’s data availability. 

The model is trained using data from car parks with IDs 6, 7, 8, 13, 34, 75, 77, and 78, employing 
rescaled availability values and categorical embeddings within 24-hour input sequences. 
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3.5. Modelling and evaluation 

The models are trained using three neural network architectures (Figure 4): 
- Recurrent Neural Networks (RNN): The most basic architecture, consisting of a hidden layer that 

feeds back on itself at each time step. RNNs handle short sequences effectively but have limited 
long-term memory retention. 

- Long Short-Term Memory (LSTM): An RNN variant designed for long-term information retention. 
It incorporates three control gates—forget, input, and output—and an internal memory cell to 
regulate information flow. While capable of capturing long-term dependencies, LSTMs are more 
computationally expensive. 

- Gated Recurrent Unit (GRU): A lighter alternative to LSTM, with fewer parameters and faster 
training. It uses an update gate and a reset gate to control information flow, achieving competitive 
performance with reduced complexity. 

The objective is to compare the basic version of each architecture, without modifications (single 
layer, 32 neurons per layer, no optimizations) with an optimized version obtained through Bayesian 
hyperparameter optimization, which was selected over random search for its greater efficiency in 
exploring the search space. In machine learning, this basic, unmodified version of a model it is usually 
called “vanilla model”. We will use this term to refer to a baseline before adding custom features or 
optimizations. 

Figure 4: Architecture of the neural networks used  

 
Source: Hasan, 2020. 

The hyperparameter tuning process for the optimized models considers adjustments to the 
learning rate, number of layers, and number of neurons per layer. The tested hyperparameter 
configurations for each approach are shown in Table 2 

Table 2. parameters proposed in each architecture 

Parameter Value Optimal 

Optimizer Adam Adam 

Batch Size 32 32 

Learning rate 0.001 [0.005-0.02] 

Weight decay 0.05 0.05 

Dropout 0.2 0.2 

Number of layers 1 [2,3,4] 

Number of neurons per layer 32 [16,32,64] 

Source: Own elaboration, 2025. 
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4. Results and discussion 

4.1. Loss Function Evolution 

In predictive modelling, the loss function quantifies the discrepancy between a model’s predictions 
and the actual observed values, guiding the optimization process during training. By minimizing the 
loss, the model iteratively adjusts its parameters to improve both accuracy and generalization. In the 
context of parking space prediction, the loss function serves as a key indicator of how effectively the 
model captures occupancy patterns and forecasts availability over time. 

For Parking ID 6 with a recurrent neural network (RNN) architecture, the training and validation 
loss curves (Figure 5) exhibit a steep decline during the initial epochs, stabilizing at near-zero values 
(approximately 0.002–0.003). The minimal divergence between training and validation loss indicates 
stable convergence and negligible overfitting. 

Two key factors likely contributed to this behaviour. First, the bounded range of input variables 
stabilized the neural network activation dynamics. Second, the implementation of Early Stopping 
terminated training when improvements plateaued, thereby reducing unnecessary computation and 
mitigating the risk of overfitting. 

Figure 5: Evolution of training and validation loss for Parking ID 6 using the RNN model. 

 

Source: Own elaboration, 2025 

4.2. Baseline Model Performance: Mean Absolute Error (MAE) 

The Mean Absolute Error (MAE) was selected as the evaluation metric due to its interpretability. MAE 
represented the average absolute deviation between predicted and actual values, regardless of 
direction, providing a direct measure of prediction accuracy. Importantly, in this work, the MAE was 
expressed as a percentage of occupied spaces rather than absolute counts. For example, a 2.4% MAE 
for car park 13 in the vanilla GRU model corresponded to approximately 5.49 spaces out of a total 
capacity of 229.  

The MAE results for the baseline (vanilla) models were shown in Figure 6. Several observations 
emerged from this analysis. Certain parking facilities exhibited higher prediction errors, notably 
Parking 34, which reached 4.0% MAE with the GRU architecture. In contrast, car parks 13 and 8 
yielded MAEs in the range of 2.2–2.3%, suggesting highly regular occupancy patterns. Regarding 
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architectural comparison, LSTM and GRU delivered comparable performance, generally 
outperforming the simpler Multilayer Network (MN). 

Figure 6: Mean Absolute Error by parking facility and model architecture (vanilla configuration). 

 

Source: Own elaboration, 2025. 

4.3. Optimized Model Performance: Bayesian Hyperparameter Tuning 

Bayesian optimization via Optuna was employed to refine the hyperparameters of the RNN, LSTM, 
and GRU architectures. The results (Figure 7) indicated overall improvement, as in most parking–
model combinations the optimization yielded lower MAE values, confirming the benefit of 
hyperparameter tuning.  

However, the gains were generally modest, reflecting the relatively regular and predictable nature 
of occupancy patterns in the dataset.  

A notable exception was Parking 34 with the GRU model, which showed degraded performance, 
with the MAE increasing from 4.0% to 6.9%, indicating sensitivity to hyperparameter configurations 
and potential overfitting. Despite this, most optimized models achieved MAEs below 3%, meeting the 
threshold for real-time deployment. 
  

10



AI-Based Prediction Models for Urban Parking Availability 

 

Figure 7: Mean Absolute Error by parking facility and model architecture after Bayesian optimization. 

 

Source: Own elaboration, 2025. 

4.4. Dynamics and Prediction Fidelity 

Figure 8 underscored the ability of RNN, LSTM, and GRU models—both vanilla and optimized—to 
capture the strong periodicity in parking occupancy at a fine temporal resolution.  

Even without optimization, all models closely tracked the cyclical patterns, indicating that the 
dominant temporal structure was readily learnable from historical data.  

Optimized configurations obtained via Bayesian search tended to better fit peak and trough 
transitions, particularly during abrupt changes in occupancy (e.g., around hours 30–40 and 120–140), 
where vanilla models exhibited slight lag or underestimation.  

Discrepancies between predictions and actual values were most visible during sharp, short-lived 
deviations from the main cycle, likely caused by atypical events or demand shocks not fully captured 
by the training data.  

Given the small performance gap, the choice between vanilla and optimized models appeared to 
depend less on accuracy and more on computational constraints, latency requirements, and ease of 
retraining in production environments. 
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Figure 8: Predictions on the 1st week of the test set for car park ID = 6 

 

Source: Own elaboration, 2025. 

Across all models and car parks, hyperparameter optimization via Bayesian search yielded 
consistent MAE reductions compared to the vanilla configurations. However, improvements were 
modest, reflecting the relatively regular and predictable nature of the patterns. In some cases, the 
computational overhead of more complex models may outweigh their marginal accuracy gains, 
particularly for real-time deployment scenarios. 

4.5. Implications for Deployment and Scalability 

The results confirm the feasibility of applying recurrent neural networks to urban parking occupancy 
forecasting. While hyperparameter optimization enhances accuracy in most cases, the modest 
improvements—coupled with increased computational costs—suggest that vanilla models may 
already suffice for operational contexts, particularly where computational resources are limited. 

This methodology, validated on the city of Valencia, is currently being integrated into the City 
Council’s real-time information systems, enabling predictive occupancy data for public use. Beyond 
this specific case, the approach could be adapted to other cities with similar data availability, offering 
potential benefits in traffic management, urban mobility planning, and sustainable transport policy. 

4.6. Comparison with previous works 

Our findings align with and extend prior research on parking availability prediction within the 
broader smart-city agenda (Batty et al., 2012). Consistent with evidence that urban mobility time 
series are amenable to data-driven forecasting (Calabrese et al., 2011; Zheng et al., 2015), we observe 
highly learnable occupancy patterns across facilities, reflected in rapidly convergent loss curves and 
low validation errors. 

Prior studies have reported that relatively simple machine learning models can, in certain 
contexts, outperform more complex neural network architectures (Awan et al., 2020; Inam et al., 
2022). Our findings refine this perspective: baseline recurrent models (RNN, LSTM, and GRU) already 
achieve low MAEs—approximately 2–3% for most car parks—with Bayesian hyperparameter 
optimization yielding only marginal further improvements. This outcome aligns with the broader 
literature, which suggests that when signals exhibit strong regularity and periodicity, as is typical in 
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parking demand, increases in architectural complexity offer diminishing returns unless 
complemented by richer and more diverse covariates. 

Regarding LSTMs and GRUS, prior work shows they are well suited to long-range temporal 
dependencies in parking and traffic time series (Barraco et al., 2021; Cho et al., 2014; Hochreiter & 
Schmidhuber, 1997; Zhao & Zhang, 2024). Our cross-model comparison corroborates this: LSTM and 
GRU perform similarly and slightly better than a simpler multilayer network baseline, with stable 
generalization. This stability is consistent with good practice reported in the literature—bounded 
inputs and early stopping—which mitigates exploding/vanishing gradients and overfitting in 
recurrent models. 

Studies leveraging contextual features (e.g., day type, time of day, weather) report that neural 
networks can outperform classical time-series baselines such as ARIMA/SARIMA (Sebatli, 2023), and 
that architectures capturing temporal—and sometimes spatial—structure (e.g., temporal 
convolutional networks) can further improve accuracy (Chen et al., 2023; Zhang et al., 2024). Our 
results, obtained with recurrent networks and the available feature set, reach low error rates without 
heavy architectural machinery. This suggests that, for many facilities, periodic structure dominates 
the signal. Nevertheless, the persistent “hard” cases (e.g., Parking 34) echo prior findings that context 
variability can erode performance (Yang et al., 2019; Zheng et al., 2014). In such settings, 
incorporating exogenous variables and/or spatial coupling (e.g., neighboring facilities, events, transit 
supply) is likely to close the gap noted in the literature. 

Bayesian hyperparameter search brings small but consistent MAE reductions for most facilities, 
yet with notable sensitivity in outliers (e.g., GRU on Parking 34). This aligns with reports that 
improvements from advanced tuning or deeper architectures may be incremental compared to their 
computational cost, especially for real-time deployment—supporting the pragmatic choice of well-
regularized vanilla RNN/LSTM/GRU when latency and maintainability matter. 

5. AI explainability 

When applying Artificial Intelligence (AI) and Machine Learning (ML) models, interpretability is 
crucial to understand and validate the results. Explainable AI (XAI) refers to techniques and methods 
that make the decision-making processes of AI systems understandable to humans. 

In this work, two complementary explainability approaches were used: SHapley Additive 
exPlanations (SHAP) and surrogate models. 

5.1. SHAP Analysis 

SHAP, based on game theory, estimates the marginal contribution of each input variable to a specific 
prediction. It does so by evaluating all possible combinations of features and measuring the change 
in the model’s output when each variable is included or excluded. 

In our case, the model input consists of the previous 24 time instants (hours) of occupancy data. 
SHAP computes the contribution of all combinations of these instants to the prediction at the current 
time step. 

Figure 9 shows the SHAP values for the LSTM vanilla model applied to car park ID 6. The results 
indicate that the most recent 10–12 instants have the highest influence on the prediction, in contrast 
to the exploratory data analysis (EDA) findings, which suggested that all 24 previous instants were 
relevant. This suggests that the input time window could be reduced by half without significantly 
degrading accuracy, thus lowering computational cost. 
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Figure 9: SHAP values for car park ID 6, LSTM vanilla model 

 

Source: Own elaboration, 2025. 

Additionally, the embedding distributions for categorical variables (Figure 10) reveal that months 
with similar behaviours cluster together in the vector space, corroborating patterns identified in the 
EDA. 

Figure 10: Embedding distributions for categorical variables 

   

Source: Own elaboration, 2025 

5.2. Surrogate Model Analysis 

A surrogate model was employed to approximate the behaviour of the “black box” neural network 
using a simpler, interpretable model—in this case, a regression decision tree. 

Let 𝑋 ∈ ℝ𝑛×𝑑  be the input features and 𝑦true ∈ ℝ𝑛 the true labels. The LSTM predictions are: 
    𝑦̂LSTM = LSTM(𝑋, 𝑦true)  
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With residuals: 
𝑒LSTM = 𝑦true − 𝑦̂LSTM  

 

A regresion tree is trained on (𝑋, 𝑦̂LSTM) to mimic the LSTM’s predictions: 
𝑦̂TREE

 = 𝑇𝑅𝐸𝐸(𝑋, 𝑦̂
LSTM

) 

The resulting tree (Figure 11) highlights the most influential features. The analysis confirms that 
the most recent time instants dominate the predictions, except during peak traffic hours (e.g., start 
and end of the workday), when occupancy changes are more abrupt and slightly longer temporal 
dependencies become relevant. These findings further support the potential benefit of reducing the 
temporal input window to improve computational efficiency without sacrificing accuracy. 

Figure 11: Surrogate decision tree for the optimized RNN model, car park ID 6 

 

Source: Own elaboration, 2025 

5.3. Limitations 

The explainability analysis also highlights certain limitations of the current approach. Contextual 
factors such as special events, cultural activities, or road closures are not included in the model, yet 
they may significantly affect parking demand. Moreover, the available data are not uniformly 
distributed across all areas of the city, which could affect the generalizability of the explainability 
findings. 

6. Conclusions and future work 

This study demonstrates the feasibility of using machine learning techniques to predict the 
availability of parking spaces in urban environments, achieving a level of precision that supports 
integration into smart mobility applications. The developed system, applied to public car parks in the 
city of Valencia, is based on recurrent neural network architectures and incorporates both optimized 
and baseline configurations. 

An exhaustive process of data acquisition and preprocessing was carried out, identifying and 
addressing multiple limitations that could have compromised prediction quality. This preliminary 
work proved essential to ensuring the robustness and reliability of the final system. 

The evaluation of three recurrent architectures—RNN, LSTM, and GRU—showed that all are 
capable of capturing cyclical occupancy patterns with high accuracy. While hyperparameter tuning 
via Bayesian optimization yielded modest improvements, even the vanilla configurations performed 
satisfactorily, striking a balance between predictive accuracy and computational cost. 
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Our results are congruent with the previous works showing that recurrent models are a strong 
default for parking occupancy time series and that simple, well-regularized baseline can be sufficient 
for most facilities.  

Explainability techniques, including SHAP analysis and surrogate models, provided valuable 
insights into the decision-making process of the models, clarifying the influence of temporal and 
categorical variables on the predictions. These analyses also revealed opportunities to reduce the 
temporal input window without significantly degrading performance, potentially lowering 
computational requirements. 

Despite the low prediction errors achieved, model performance depends heavily on the quality 
and temporal resolution of the input data. Incomplete or irregularly updated datasets, as well as the 
absence of contextual variables such as weather conditions, special events, or traffic incidents, may 
reduce accuracy. 

The Valencia case study contributes empirical evidence from a European, open-data setting where 
smart-mobility infrastructure is being progressively deployed. 

Future work will explore hybrid modelling strategies that integrate recurrent neural networks 
with external data sources to capture a wider range of influencing factors. Moreover, transfer learning 
approaches could also facilitate deployment in cities with limited historical data. Additionally, real-
world evaluations of the system’s impact on driver behaviour and urban mobility will be conducted 
to refine both the models and their practical applications. 

In the medium term, the system could evolve into an automated MLOps pipeline capable of 
integrating new data in real time, continuously optimizing model parameters, and streamlining 
deployment in production environments. The techniques and methodologies developed here are 
readily extensible to other domains of mobility and urban services, offering a scalable foundation for 
future smart city initiatives. 
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